Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T07:50:58.889Z Has data issue: false hasContentIssue false

The Modern Information Technologies and Visualization Methods for Analysis of Computer Simulation Results for Complex Plasma

Published online by Cambridge University Press:  03 June 2015

T. S. Ramazanov*
Affiliation:
IETP, Al-Farabi Kazakh National University, 71, Al-Farabi av., Almaty, 050040, Kazakhstan
S. K. Kodanova
Affiliation:
IETP, Al-Farabi Kazakh National University, 71, Al-Farabi av., Almaty, 050040, Kazakhstan
M. K. Issanova
Affiliation:
IETP, Al-Farabi Kazakh National University, 71, Al-Farabi av., Almaty, 050040, Kazakhstan
N. Kh. Bastykova
Affiliation:
IETP, Al-Farabi Kazakh National University, 71, Al-Farabi av., Almaty, 050040, Kazakhstan
Zh. A. Moldabekov
Affiliation:
IETP, Al-Farabi Kazakh National University, 71, Al-Farabi av., Almaty, 050040, Kazakhstan
*
*Corresponding author.Email:[email protected]
Get access

Abstract

In this paper we present a software package based on modern information technologies that allows rapid analysis and visualization of the properties of complex plasmas. The properties of plasma are simulated by two means. First of all, we have applied the molecular dynamics simulation method which numerically solves the equations of motions for plasma particles. Secondly, we calculate microscopic properties of plasma by using the Boltzmann equation with additional relations, initial and boundary conditions.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Kačeniauskas, A., Kačianauskas, R., Maknickas, A. and Markauskas, D., Computation and visualization of discrete particle systems on gLite-based grid, Advances in Engineering Software, 42, 237, (2011).Google Scholar
[2]Thooris, B. and Pomarède, D., Visualization of numerical simulations of astrophysical and fusion plasmas with the SDvision code, Procedia Computer Science, 4, 528, (2011)Google Scholar
[3]Ramazanov, T. S., Dzhumagulova, K. N. and Omarbakiyeva, Yu. A., Effective polarization interaction potential charge-atom for partially ionized dense plasma, Phys. Plasmas, 12, 092702, (2005).CrossRefGoogle Scholar
[4]Baimbetov, F. B., Nurekenov, Kh. T. and Ramazanov, T. S., Pseudopotential theory of classical non-ideal plasmas, Phys. Lett. A, 202, 211 (1995).CrossRefGoogle Scholar
[5]Ramazanov, T. S. and Dzhumagulova, K. N., Effective screened potentials of strongly coupled semiclassical plasma, Phys. Plasmas, 9, 3758, (2002).Google Scholar
[6]Kawamura, K. and Okada, I., Computer simulation on molten ionic salts, Atomic Energy Review, 16, 209, (1978).Google Scholar
[7]Sandster, M. J. L. and Dixon, M., Interionic potentials in alkali halides and their use in simulation of the molten salts, Advances in Physics, 25, 247, (1976).CrossRefGoogle Scholar
[8]Buüyükkecҫeci, F., Awile, O. and Sbalzarini, I. F., A portable OpenGL implementation of generic particle interpolation in 2D and 3D, Parallel Computing, 39, 94, (2013).CrossRefGoogle Scholar
[9]Ramazanov, T. S., Dzhumagulova, K. N., Jumabekov, A. N. and Dosbolayev, M. K., Structural properties of dusty plasma in direct current and radio frequency gas discharges, Phys. Plasmas, 15, 053704, (2008).Google Scholar
[10]Maiorov, S. A., Ramazanov, T. S., Dzhumagulova, K. N., Jumabekov, A. N. and Dos-bolayev, M. K., Investigation of plasma-dust structures in He-Ar gas mixture, Phys. Plasmas, 15, 093701, (2008).Google Scholar
[11]Sukhinin, G. I., Fedoseev, A. V., Ramazanov, T. S.et al., Non-local effects in a stratified glow discharge with dust particles, J. Phys. D: Appl. Phys., 41, 245207, (2008).Google Scholar
[12]Fortov, V. E., Nefedov, A. P.et al., Crystalline structures of strongly coupled dusty plasmas in dc glow discharge strata, Phys. Lett. A, 229, 317, (1997).Google Scholar
[13]Fortov, V. E., Nefedov, A. P.et al., Dependence of the Dust-Particle Charge on Its Size in a Glow-Discharge, Plasma Phys. Rev. Lett., 87, 205002, (2001).Google Scholar
[14]Konopka, U., Morfill, G. E. and Ratke, L., Measurement of the Interaction Potential of Micro-spheres in the Sheath of a rf Discharge, Phys. Rev. Lett., 84, 891, (2000).Google Scholar
[15]Fortov, V. E., Khrapak, A. G., Khrapak, S., Molotkov, V. I. and Petrov, O. F., Dusty plasma, Usp, 47, 447, (2004).Google Scholar
[16]Khrapak, S. A., Floating potential of a small particle in a plasma: Difference between Maxwellian and Druyvesteyn electron velocity distributions, Phys. Plasmas, 17, 104502, (2010).Google Scholar
[17]Wright, R. S., Lipchak, B. and Haemel, N., OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition), Addison-Wesley Professional, 1248, (2006).Google Scholar
[18]Angel, E., Interactive Computer Graphics: A Top-Down Approach with OpenGL, Addison Wesley, 864, (2008).Google Scholar
[19]Woo, M., Neider, J., Davis, T. and Shreiner, D., OpenGL Architecture Review Board. OpenGL Architecture Review Board. OpenGL Programming Guide (4th Edition), Addison-Wesley Professional, 816, (2006).Google Scholar
[20]Anderson, J. D., Computational Fluid Dynamics: The Basics with Applications, New York, 563, (1995).Google Scholar
[21]Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A. E., Robert, S. R. and Skeel, D., Computational Molecular Dynamics: Challenges, Methods, Ideas, Berlin, 504, (1997).Google Scholar
[22]Cantu, M., Mastering Delphi 7, Sybex, 992, (2003).Google Scholar
[23]Flenov, M.Delphi. Secrets of Skill, St. Petersburg, 865, (2008).Google Scholar