Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T14:46:23.406Z Has data issue: false hasContentIssue false

Modelling and Numerics for Respiratory Aerosols

Published online by Cambridge University Press:  14 September 2015

Laurent Boudin
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06 & CNRS, UMR 7598 LJLL, Paris, F-75005, France Inria, Équipe-projet Reo, BP 105, F-78153 Le Chesnay Cedex, France
Céline Grandmont
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06 & CNRS, UMR 7598 LJLL, Paris, F-75005, France Inria, Équipe-projet Reo, BP 105, F-78153 Le Chesnay Cedex, France
Alexander Lorz*
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06 & CNRS, UMR 7598 LJLL, Paris, F-75005, France Inria, Équipe-projet Mamba, BP 105, F-78153 Le Chesnay Cedex, France
Ayman Moussa
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06 & CNRS, UMR 7598 LJLL, Paris, F-75005, France Inria, Équipe-projet Reo, BP 105, F-78153 Le Chesnay Cedex, France
*
*Corresponding author. Email addresses: [email protected] (L. Boudin), [email protected] (C. Grandmont), [email protected] (A. Lorz), [email protected] (A. Moussa)
Get access

Abstract

In this work, we present a model for an aerosol (air/particle mixture) in the respiratory system. It consists of the incompressible Navier-Stokes equations for the air and the Vlasov equation for the particles in a fixed or moving domain, coupled through a drag force. We propose a discretization of the model, investigate stability properties of the numerical code and sensitivity to parameter perturbation. We also focus on the influence of the aerosol on the airflow.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Agnew, J., Pavia, D., and Clarke, y. Aerosol particle impaction in the conducting airways. Phys. Med. Biol., 29:767777, 1984.Google Scholar
[2]Amsden, A. A.. KIVA-3: a KIVA program with block-structured mesh for complex geometries. Technical Report LA-12503-MS, Los Alamos National Laboratory, 1993.Google Scholar
[3]Amsden, A. A.. KIVA-3V: a block-structured KIVA program for engines with vertical or canted valves. Technical Report LA-13313-MS, Los Alamos National Laboratory, 1997.Google Scholar
[4]Amsden, A. A., O’Rourke, P. J., and Butler, T. D.. KIVA-II: A computer program for chemically reactive flows with sprays. Technical Report LA-11560-MS, Los Alamos National Laboratory, 1989.Google Scholar
[5]Amsden, A. A., Ramshaw, J. D., O’Rourke, P. J., and Dukowicz, J. K.. KIVA: A computer program for two- and three-dimensional fluid flows with chemical reactions and fuel spray. Technical Report LA-10245-MS, Los Alamos National Laboratory, 1985.Google Scholar
[6]Anoshchenko, O. and Monvel-Berthier, A. Boutet de. The existence of the global generalized solution of the system of equations describing suspension motion. Math. Methods Appl. Sci., 20(6):495519, 1997.Google Scholar
[7]Asgharian, B., Hofmann, W., and Bergmann, R.. Particle deposition in a multiple-path model of the human lung. Aerosol Sci. Tech., 34(4):332339, 2001.Google Scholar
[8]Baffico, L., Grandmont, C., and Maury, B.. Multiscale modeling of the respiratory tract. Math. Models Methods Appl. Sci., 20(1):5993, 2010.Google Scholar
[9]Balásházy, I. and Hofmann, W.. Deposition of aerosols in asymmetric airway bifurcations. J. Aerosol Sci., 26(2):273292, 1995.Google Scholar
[10]Baranger, C., Boudin, L., Jabin, P.-E., and Mancini, S.. A modeling of biospray for the upper airways. ESAIM Proc, 14:4147, 2005.Google Scholar
[11]Boudin, L., Desvillettes, L., Grandmont, C., and Moussa, A.. Global existence of solutions for the coupled Vlasov and Navier-Stokes equations. Differential Integral Equations, 22(1112):12471271, 2009.Google Scholar
[12]Boudin, L., Desvillettes, L., and Motte, R.. A modeling of compressible droplets in a fluid. Commun. Math. Sci, 1(4):657669, 2003.Google Scholar
[13]Boudin, L., Grandmont, C., Grec, B., and Yakoubi, D.. Influence of the spray retroaction on the airflow. In CEMRACS 2009 - Mathematical Modelling in Medicine, volume 30 of ESAIM Proc, pages 153165. EDP Sci., Les Ulis, 2010.Google Scholar
[14]Clift, R., Graces, J. R., and Weber, M. E.. Bubbles, drops and particles. Academic Press, 1978.Google Scholar
[15]Comer, J. K., Kleinstreuer, C., and Zhang, Z.. Flow structures and particle deposition patterns in double bifurcation airway models. part 1. Air flow fields. J. Fluid Mech., 435:2554, 2001.Google Scholar
[16]Comer, J. K., Kleinstreuer, C., and Zhang, Z.. Flow structures and particle deposition patterns in double bifurcation airway models. Part 2. Aerosol transport and deposition. J. Fluid Mech., 435:5580, 2001.Google Scholar
[17]Comerford, A., Bauer, G., and Wall, W. A.. Nanoparticle transport in a realistic model of the tracheobronchial region. Int. J. Numer. Method Biomed. Eng., 26(7):904914, 2010.Google Scholar
[18]Cottet, G.-H. and Raviart, P.-A.. On particle-in-cell methods for the Vlasov-Poisson equations. Transport Theory Statist. Phys., 15(12):131, 1986.Google Scholar
[19]Decoène, A.. Hydrostatic model for three-dimensional free surface flows and numerical schemes. PhD thesis, Université Pierre et Marie Curie, France, 2007.Google Scholar
[20]Degond, P. and Mas-Gallic, S.. The weighted particle method for convection-diffusion equations. I. The case of an isotropic viscosity. Math. Comp., 53(188):485507, 1989.Google Scholar
[21]Degond, P. and Mas-Gallic, S.. The weighted particle method for convection-diffusion equations. II. The anisotropic case. Math. Comp., 53(188):509525, 1989.Google Scholar
[22]Desvillettes, L.. Some aspects of the modeling at different scales of multiphase flows. Comput. Methods Appl. Mech. Engrg., 199(2122):12651267, 2010.Google Scholar
[23]Donéa, J.. Arbitrary Lagrangian Eulerian methods. In Computational Methods for Transient Analysis, volume 1 of Computational Methods in Mechanics, pages 473516. North Holland, Elsevier, 1983.Google Scholar
[24]Dufour, G.. Modélisation multi-fluide eulérienne pour les écoulements diphasiques à inclusions dispersées. PhD thesis, Université Paul-Sabatier Toulouse-III, France, 2005.Google Scholar
[25]Fouchet-Incaux, J.. Artificial boundaries and formulations for the incompressible Navier-Stokes equations: applications to air and blood flows. SMA J., pages 140, 2014.Google Scholar
[26]Frey, P. J. and George, P.-L.. Mesh generation. Hermes Science Publishing, Oxford, 2000. Application to finite elements, Translated from the 1999 French original by the authors.Google Scholar
[27]Gemci, T., Corcoran, T. E., and Chigier, N.. A numerical and experimental study of spray dynamics in a simple throat model. Aerosol Sci. Technol., 36:1838, 2002.Google Scholar
[28]Grandmont, C., Maday, Y., and Maury, B.. A multiscale/multimodel approach of the respiration tree. In New trends in continuum mechanics, volume 3 of Theta Ser. Adv. Math., pages 147157. Theta, Bucharest, 2005.Google Scholar
[29]Guyon, E., Hulin, J.-P., and Weber, L.. Hydrodynamique physique. CNRS Éditions, 2001.Google Scholar
[30]Hamdache, K.. Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Indust. Appl. Math., 15(1):5174, 1998.Google Scholar
[31]Hofmann, W.. Modelling inhaled particle deposition in the human lung - a review. J. Aerosol Sci., 42(10):693724, 2011.Google Scholar
[32]Hughes, T. J. R., Liu, W. K., and Zimmermann, T. K.. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Engrg., 29(3):329349, 1981.Google Scholar
[33]Longest, P. W. and Hindle, M.. Numerical model to characterize the size increase of combination drug and hygroscopic excipient nanoparticle aerosols. Aerosol Sci. Tech., 45(7):884899, 2011.Google Scholar
[34]Martonen, T. B.. Mathematical model for the selective deposition of inhaled pharmaceuticals. J. Pharm. Sci., 82:11911199, 1993.Google Scholar
[35]Mathiaud, J.. Étude de systèmes de type gaz-particules. PhD thesis, École normale supérieure de Cachan, France, 2006.Google Scholar
[36]Mitsakou, C., Helmis, C., and Housiadas, C.. Eulerian modelling of lung deposition with sectional representation of aerosol dynamics. J. Aerosol Sci., 36:7495, 2005.Google Scholar
[37]Moussa, A.. Mathematical and numerical study of the transport of sprays in the human lung. PhD thesis, École Normale Supérieure de Cachan, France, 2009.Google Scholar
[38]Nobile, F.. Numerical approximation of fluid-structure interaction problems with applications to haemodynamics. PhD thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 2001.Google Scholar
[39]Oakes, J. M., Marsden, A. L., Grandmont, C., Shadden, S. C., Darquenne, C., and Vignon-Clémentel, I. E.. Airflow and particle deposition simulations in health and emphysema: From in vivo to in silico animal experiments. Ann. Biomed. Eng., 42(4):899914, 2014.Google Scholar
[40]O’Rourke, P. J.. Collective drop effects on vaporizing liquid sprays. PhD thesis, Los Alamos National Laboratory & Princeton University, USA, 1981.Google Scholar
[41]Tezduyar, T. E.. Stabilized finite element formulations for incompressible flow computations. In Advances in applied mechanics, Vol. 28, volume 28 of Adv. Appl. Mech., pages 144. Academic Press, Boston, MA, 1992.Google Scholar
[42]Torres, D. J. and Trujillo, M. F.. KIVA-4: An unstructured ALE code for compressible gas flow with sprays. J. Comput. Phys., 219:943975, December 2006.Google Scholar
[43]Westermann, T.. Particle-in-cell simulations with moving boundaries — adaptive mesh generation. J. Comput. Phys., 114(2):161175, 1994.Google Scholar
[44]Williams, F.. Combustion Theory. Benjamin Cummings, second edition, 1985.Google Scholar
[45]Yu, C.. Uniqueness of global strong solutions to the 2D Navier-Stokes-Vlasov equations. ArXiv e-prints, July 2012.Google Scholar
[46]Yu, C.. Global weak solutions to the incompressible Navier-Stokes-Vlasov equations. J. Math. Pures Appl. (9), 100(2):275293, 2013.Google Scholar
[47]Zhang, Z., Kleinstreuer, C., and Kim, C. S.. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model. Ann. Biomed. Eng., 36(12):20952110, 2008.Google Scholar