Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T01:24:07.977Z Has data issue: false hasContentIssue false

Lattice Boltzmann Simulation of Particle Motion in Binary Immiscible Fluids

Published online by Cambridge University Press:  14 September 2015

Yu Chen
Affiliation:
Department of Engineering Mechanics and CNMM, School of Aerospace, Tsinghua University, Beijing 100084, China
Qinjun Kang
Affiliation:
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Qingdong Cai*
Affiliation:
LTCS, CAPT and Department of Mechanics and Aerospace Engineering, Peking University, Beijing 100871, China
Moran Wang*
Affiliation:
Department of Engineering Mechanics and CNMM, School of Aerospace, Tsinghua University, Beijing 100084, China
Dongxiao Zhang
Affiliation:
Department of Energy and Resources Engineering, Peking University, Beijing, China
*
*Corresponding author. Email addresses: [email protected] (Q. Cai), [email protected] (M.Wang), [email protected] (Y. Chen), [email protected] (Q. Kang), [email protected] (D. Zhang)
*Corresponding author. Email addresses: [email protected] (Q. Cai), [email protected] (M.Wang), [email protected] (Y. Chen), [email protected] (Q. Kang), [email protected] (D. Zhang)
Get access

Abstract

We combine the Shan-Chen multicomponent lattice Boltzmann model and the link-based bounce-back particle suspension model to simulate particle motion in binary immiscible fluids. The impact of the slightly mixing nature of the Shan-Chen model and the fluid density variations near the solid surface caused by the fluid-solid interaction, on the particle motion in binary fluids is comprehensively studied. Our simulations show that existing models suffer significant fluid mass drift as the particle moves across nodes, and the obtained particle trajectories deviate away from the correct ones. A modified wetting model is then proposed to reduce the non-physical effects, and its effectiveness is validated by comparison with existing wetting models. Furthermore, the first-order refill method for the newly created lattice node combined with the new wetting model significantly improves mass conservation and accuracy.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aidun, C. K. and Clausen, J. R.. Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics, 42:439472, 2010.Google Scholar
[2]Aidun, C. K., Lu, Y. N., and Ding, E. J.. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. Journal of Fluid Mechanics, 373:287311, 1998.Google Scholar
[3]Arditty, S., Whitby, C. P., Binks, B. P., Schmitt, V., and Leal-Calderon, F.. Some general features of limited coalescence in solid-stabilized emulsions. The European Physical Journal E, 11(3):273281, 2003.Google Scholar
[4]Binks, B. P.. Particles as surfactants – similarities and differences. Current Opinion in Colloid & Interface Science, 7(1C2):2141, 2002.Google Scholar
[5]Bouzidi, M., Firdaouss, >M., and Lallemand, P.. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics of Fluids, 13(11):34523459, 2001.CrossRefGoogle Scholar
[6]Caiazzo, A. and Junk, M.. Boundary forces in lattice Boltzmann: Analysis of momentum exchange algorithm. Computers & Mathematics with Applications, 55(7):14151423, 2008.CrossRefGoogle Scholar
[7]Chen, H. D., Chen, S. Y., and Matthaeus, W. H.. Recovery of the navier-stokes equations using a lattice-gas Boltzmann method. Physical Review A, 45(8):R5339R5342, 1992.CrossRefGoogle ScholarPubMed
[8]Chen, L., Kang, Q., Mu, Y., He, Y.-L., and Tao, W.-Q.. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. International Journal of Heat and Mass Transfer, 76(0):210236, 2014.Google Scholar
[9]Chen, S. and Doolen, G. D.. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30:329364, 1998.CrossRefGoogle Scholar
[10]Chen, S. Y., Martinez, D., and Mei, R. W.. On boundary conditions in lattice Boltzmann methods. Physics of Fluids, 8(9):25272536, 1996.Google Scholar
[11]Chen, Y., Cai, Q., Xia, Z., Wang, M., and Chen, S.. Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions. Physical Review E, 88(1):013303, 2013.Google Scholar
[12]Chun, B. and Ladd, A. J. C.. Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Physical review E, 75(6):066705, 2007.CrossRefGoogle ScholarPubMed
[13]Clausen, J. R. and Aidun, C. K.. Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. International Journal of Multiphase Flow, 35(4):307311, 2009.Google Scholar
[14]Cook, B. K., Noble, D. R., and Williams, J. R.. A direct simulation method for particle-fluid systems. Engineering Computations, 21(2-4):151168, 2004.Google Scholar
[15]Ginzburg, I. and d’Humières, D.. Multireflection boundary conditions for lattice Boltzmann models. Physical Review E, 68(6):066614, 2003.Google Scholar
[16]Günther, F., Janoschek, F., Frijters, S., and Harting, J.. Lattice Boltzmann simulations of anisotropic particles at liquid interfaces. Computers & Fluids, 80:184189, 2013.Google Scholar
[17]Guo, Z., Shi, B., and Wang, N.. Lattice BGK model for incompressible Navier-Stokes equation. Journal of Computational Physics, 165(1):288306, 2000.CrossRefGoogle Scholar
[18]Guo, Z., Zheng, C., and Shi, B.. Discrete lattice effects on the forcing term in the lattice Boltz-mann method. Physical Review E, 65(4):046308, 2002.Google Scholar
[19]He, X. Y. and Luo, L. S.. Lattice Boltzmann model for the incompressible Navier-Stokes equation. Journal of Statistical Physics, 88(3-4):927944, 1997.CrossRefGoogle Scholar
[20]Herzig, E. M., Robert, A., van’t Zand, D. D., Cipelletti, L., Pusey, P. N., and Clegg, P. S.. Dynamics of a colloid-stabilized cream. Physical Review E, 79(1):011405, 2009.CrossRefGoogle ScholarPubMed
[21]Holtzman, R., Szulczewski, M. L., and Juanes, R.. Capillary fracturing in granular media. Physical Review Letters, 108(26):264504, 2012.CrossRefGoogle ScholarPubMed
[22]Hou, S. L., Shan, X. W., Zou, Q. S., Doolen, G. D., and Soll, W. E.. Evaluation of two lattice Boltzmann models for multiphase flows. Journal of Computational Physics, 138(2):695713, 1997.CrossRefGoogle Scholar
[23]Jansen, F. and Harting, J.. From bijels to Pickering emulsions: A lattice Boltzmann study. Physical Review E, 83(4):046707, 2011.Google Scholar
[24]Joshi, A. S. and Sun, Y.. Multiphase lattice Boltzmann method for particle suspensions. Phys Rev E Stat Nonlin Soft Matter Phys, 79(6 Pt 2):066703, 2009.CrossRefGoogle ScholarPubMed
[25]Kang, Q. J., Zhang, D. X., and Chen, S. Y.. Displacement of a two-dimensional immiscible droplet in a channel. Physics of Fluids, 14(9):32033214, 2002.CrossRefGoogle Scholar
[26]Ladd, A. J. C.. Numerical simulations of particulate suspensions via a discretized Boltzmann-equation. 1. Theoretical foundation. Journal of Fluid Mechanics, 271:285309, 1994.CrossRefGoogle Scholar
[27]Lallemand, P. and Luo, L. S.. Lattice Boltzmann method for moving boundaries. Journal of Computational Physics, 184(2):406421, 2003.Google Scholar
[28]Liang, G., Zeng, Z., Chen, Y., Onishi, J., Ohashi, H., and Chen, S.. Simulation of self-assemblies of colloidal particles on the substrate using a lattice Boltzmann pseudo-solid model. Journal of Computational Physics, 248(0):323338, 2013.Google Scholar
[29]Martys, N. S. and Chen, H.. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Physical Review E, 53(1):743, 1996.Google Scholar
[30]Mei, R. W., Luo, L. S., and Shyy, W.. An accurate curved boundary treatment in the lattice Boltzmann method. Journal of Computational Physics, 155(2):307330, 1999.CrossRefGoogle Scholar
[31]Nguyen, N. Q. and Ladd, A. J. C.. Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Physical Review E, 66(4):046708, 2002.CrossRefGoogle ScholarPubMed
[32]Onishi, J., Kawasaki, A., Chen, Y., and Ohashi, H.. Lattice Boltzmann simulation of capillaryin-teractions among colloidal particles. Computers & Mathematics with Applications, 55(7):15411553, 2008.CrossRefGoogle Scholar
[33]Porter, M. L., Coon, E. T., Kang, Q., Moulton, J. D., and Carey, J. W.. Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios. Physical Review E, 86(3):036701, 2012.CrossRefGoogle ScholarPubMed
[34]Qi, D. W.. Lattice-Boltzmann simulations of particles in non-zero-reynolds-number flows. Journal of Fluid Mechanics, 385:4162, 1999.Google Scholar
[35]Qian, Y. H., d’Humières, D., and Lallemand, P.. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17(6bis):479484, 1992.CrossRefGoogle Scholar
[36]Rickards, A. R., Brannon, H. D., Wood, W. D., et al. High strength ultralightweight proppant lends new dimensions to hydraulic fracturing applications. SPE Production & Operations, 21(02):212221, 2006.CrossRefGoogle Scholar
[37]Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Sugiyama, K., and Toschi, F.. Generalized lattice Boltzmann method with multirange pseudopotential. Physical Review E, 75(2):026702, 2007.Google Scholar
[38]Shan, X. W. and Chen, H. D.. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 47(3):18151819, 1993.Google Scholar
[39]Shan, X. W. and Chen, H. D.. Simulation of nonideal gases and liquid-gas phase-transitions by the lattice Boltzmann-equation. Physical Review E, 49(4):29412948, 1994.Google Scholar
[40]Shan, X. W. and Doolen, G.. Multicomponent lattice-Boltzmann model with interparticle interaction. Journal of Statistical Physics, 81(1-2):379393, 1995.Google Scholar
[41]Stratford, K., Adhikari, R., Pagonabarraga, I., and Desplat, J. C.. Lattice Boltzmann for binary fluids with suspended colloids. Journal of Statistical Physics, 121(1-2):163178, 2005.Google Scholar
[42]Stratford, K., Adhikari, R., Pagonabarraga, I., Desplat, J. C., and Cates, M. E.. Colloidal jamming at interfaces: A route to fluid-bicontinuous gels. Science, 309(5744):2198–201, 2005.Google Scholar
[43]Wang, M. and Kang, Q.. Modeling electrokinetic flows in microchannels using coupled multiple lattice Boltzmann methods. J. Comput. Phys., 229(1):728744, 2010.Google Scholar
[44]Wang, M., Wang, J. K., and Chen, S. Y.. Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice poisson-Boltzmann methods. J. Comput. Phys., 226(1):836851, 2007.CrossRefGoogle Scholar
[45]Wen, B., Zhang, C., Tu, Y., Wang, C., and Fang, H.. Galilean invariant fluidcsolid interfacial dynamics in lattice Boltzmann simulations. Journal of Computational Physics, 266:161170, 2014.Google Scholar
[46]Xia, Z., Connington, K. W., Rapaka, S., Yue, P., Feng, J. J., and Chen, S.. Flow patterns in the sedimentation of an elliptical particle. Journal of Fluid Mechanics, 625:249, 2009.Google Scholar
[47]Yin, X. and Zhang, J.. An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method. Journal of Computational Physics, 231(11):42954303, 2012.Google Scholar
[48]Yu, D., Mei, R., and Shyy, W.. A unified boundary treatment in lattice Boltzmann method. New York: AIAA, 953:2003, 2003.Google Scholar
[49]Zou, Q. S., Hou, S. L., Chen, S. Y., and Doolen, G. D.. An improved incompressible lattice Boltzmann model for time-independent flows. Journal of Statistical Physics, 81(1-2):3548, 1995.Google Scholar