Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T15:07:16.520Z Has data issue: false hasContentIssue false

Effect of Oscillation Structures on Inertial-Range Intermittence and Topology in Turbulent Field

Published online by Cambridge University Press:  15 January 2016

Kun Yang
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, P.R. China
Zhenhua Xia
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, P.R. China
Yipeng Shi*
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, P.R. China
Shiyi Chen
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, P.R. China Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191, P.R. China
*
*Corresponding author. Email addresses:[email protected] (K. Yang), [email protected] (Z. Xia), [email protected] (Y. Shi), [email protected] (S. Chen)
Get access

Abstract

Using the incompressible isotropic turbulent fields obtained from direct numerical simulation and large-eddy simulation, we studied the statistics of oscillation structures based on local zero-crossings and their relation with inertial-range intermittency for transverse velocity and passive scalar. Our results show that for both the velocity and passive scalar, the local oscillation structures are statistically scale-invariant at high Reynolds number, and the inertial-range intermittency of the overall flow region is determined by the most intermittent structures characterized by one local zero-crossing. Local flow patterns conditioned on the oscillation structures are characterized by the joint probability density function of the invariants of the filtered velocity gradient tensor at inertial range. We demonstrate that the most intermittent regions for longitudinal velocity tend to lay at the saddle area, while those for the transverse velocity tend to locate at the vortex-dominated area. The connection between the ramp-cliff structures in passive scalar field and the corresponding saddle regions in the velocity field is also verified by the approach of oscillation structure classification.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Kolmogorov, A. N., Dissipation of energy in the locally isotropic turbulence, C. R. Acad. Sci. URSS, 32 (1941), 16.Google Scholar
[2]Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, C. R. Acad. Sci. URSS, 30 (1941), 301305.Google Scholar
[3]Frisch, U., Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, 1995.CrossRefGoogle Scholar
[4]Grossmann, S., Lohse, D. and Reeh, A., Different intermittency for longitudinal and transversal turbulent fluctuations, Phys. Fluids, 9 (1997), 38173825.Google Scholar
[5]Sreenivasan, K. R. and Antonia, R. A., The phenomenology of small scale turbulence, Annu. Rev. Fluid Mech., 29 (1997), 435472.Google Scholar
[6]Dhruva, B., Tsuji, Y. and Sreenivasan, K. R., Transverse structure functions in high-Reynolds-number turbulence, Phys. Rev. E, 56 (1997), R4928.Google Scholar
[7]Gotoh, T., Fukayama, D. and Nakano, T., Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation, Phys. Fluids, 14 (2002), 10651081.Google Scholar
[8]Ishihara, T., Gotoh, T. and Kaneda, Y., Study of high Reynolds number isotropic turbulence by direct numerical simulation, Annu. Rev. Fluid Mech., 41 (2009), 165180.Google Scholar
[9]Benzi, R., Biferale, L., Fisher, R., Lamb, D. Q. and Toschi, F., Inertial range Eulerian and La-grangian statistics from numerical simulations of isotropic turbulence, J. Fluid Mech., 653 (2010), 221244.Google Scholar
[10]Grauer, R., Homann, H. and Pinton, J.-F, Longitudinal and transverse structure functions in high-Reynolds-number turbulence, New J. Phys., 14 (2012), 063016.Google Scholar
[11]Warhaft, Z., Passive scalars in turbulent flows, Annu. Rev. Fluid Mech., 32 (2000), 203240.Google Scholar
[12]Gotoh, T. and Yeung, P. K., Passive scalar transport in turbulence: a computational perspective, in Ten chapters in turbulence, Cambridge University Press, 2012.Google Scholar
[13]Obukhov, A. M., Structures of the temperature field in a turbulent flow, IZv. Akad. Nauk SSSR. Ser. Geogr. Geofiz., 13 (1949), 5869.Google Scholar
[14]Corrsin, S., On the spectrum of isotropic temperature fluctuations in an isotropic turbulence, J. Appl. Phys., 22 (1951), 469473.CrossRefGoogle Scholar
[15]Kolmogorov, A. N., A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 13 (1962), 8285.Google Scholar
[16]Oboukhov, A. M., Some specific features of atmospheric tubulence, J. Fluid Mech., 13 (1962), 7781.CrossRefGoogle Scholar
[17]Meneveau, C. and Sreenivasan, K. R., Simple multifractal cascade model for fully developed turbulence, Phys. Rev. Lett., 59 (1987), 14241427.Google Scholar
[18]She, Z.-S. and Leveque, E., Universal scaling laws in fully developed turbulences, Phys. Rev. Lett., 72 (1994), 336339.CrossRefGoogle Scholar
[19]Chen, S., Sreenivasan, K. R., Nelkin, M. and Cao, N., Refined similarity hypothesis for transverse structure functions in fluid turbulence, Phys. Rev. Lett., 79 (1997), 22532256.Google Scholar
[20]Atta, C. W. V., Influence of fluctuations in local dissipation rates on turbulent scalar characteristics in the inertial subrange, Phys. Fluids, 14 (1971), 18031804.Google Scholar
[21]Zhu, Y., Antonia, R. A., and Hosokawa, I., Refined similarity hypothesis for turbulent velocity and temperature fields, Phys. Fluids, 7 (1995), 16371648.CrossRefGoogle Scholar
[22]Stolovitzky, G., Kailasnath, P., and Sreenivasan, K. R., Refined similarity hypotheses for passive scalars mixed by turbulence, J. Fluid Mech., 297 (1995), 275291.Google Scholar
[23]Prasad, R. R., Meneveau, C., and Sreenivasan, K. R., Multifractal nature of the dissipation field of passive scalars in fully turbulent flows, Phys. Rev. Lett., 61 (1988), 7477.Google Scholar
[24]Cao, N. and Chen, S., An intermittency model for passive-scalar turbulence, Phys. Fluids., 9 (1997), 12031205.Google Scholar
[25]Kraichnan, R. H., On Kolmogorov's inertial range theories, J. Fluid Mech., 62 (1974), 305330.CrossRefGoogle Scholar
[26]She, Z.-S., Jackson, E. and Orszag, S. A., Intermittent vortex structures in homogeneous isotropic turbulence, Nature, 344 (1990), 226228.Google Scholar
[27]A. Sain, Manu and Pandit, R., Turbulence and multiscaling in the randomly forced Navier-Stokes equation, Phys. Rev. Lett., 81 (1998), 43774380CrossRefGoogle Scholar
[28]Biferale, L. and Procaccia, I., Anisotropy in turbulent flows and in turbulent transport, Phys. Rep., 414 (2005), 43164.Google Scholar
[29]Camussi, R., Barbagallo, D., Guj, G. and Stella, F., Transverse and longitudinal scaling laws in non-homogeneous low Re turbulence, Phys. Fluids, 8 (1996), 11811191.Google Scholar
[30]Noullez, A., Wallace, G., Lempert, W., Miles, R. B. and Frisch, U., Transverse velocity increments in turbulent flow using the RELIEF technique, J. Fluid Mech., 339 (1997), 287307.CrossRefGoogle Scholar
[31]van de Water, W. and Herweijer, J. A., High-order structure functions of turbulence, J. Fluid Mech., 387 (1999), 337.CrossRefGoogle Scholar
[32]Shen, X. and Warhaft, Z., Longitudinal and transverse structure functions in sheared and unsheared wind-tunnel turbulence, Phys. Fluids, 14 (2002), 370381.Google Scholar
[33]Boratav, O. N. and Pelz, R. B., Structures and structure functions in the inertial range of turbulence, Phys. Fluids, 9 (1997), 14001415.CrossRefGoogle Scholar
[34]Zhou, T. and Antonia, R. A., Reynolds number dependence of the small-scale structure of grid turbulence, J. Fluid Mech., 406 (2000), 81107.CrossRefGoogle Scholar
[35]Arad, I., Dhruva, B., Kurien, S., Lvov, V. S., I. Procaccia and K. R. Sreenivasan, Extraction of anisotropic contributions in turbulent flows, Phys. Rev. Lett., 81 (1998), 53305333.Google Scholar
[36]Romano, G. P. and Antonia, R. A., Longitudinal and transverse structure functions in a turbulent round jet: effect of initial conditions and Reynolds number, J. Fluid Mech., 436 (2001), 231248.Google Scholar
[37]Zhou, T., Hao, Z., Chua, L. P. and Yu, S. C. M., Scaling of longitudinal and transverse velocity increments in a cylinder wake, Phys. Rev. E, 71 (2005), 066307.Google Scholar
[38]Pumir, A., A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient, Phys. Fluids, 6 (1994), 21182132.Google Scholar
[39]Holzer, M. and Siggia, E. D., Turbulent mixing of a passive scalar, Phys. Fluids, 6 (1994), 18201837.Google Scholar
[40]Yang, K., Shi, Y., Sreenivasan, K. R. and Chen, S., Inertial-range oscillation structures and anomalous scaling of fluid turbulence, (2015), to appear.Google Scholar
[41]Chong, M. S., Perry, A. E. and Cantwell, B. J., A general classification of three-dimensional flow fields, Phys. Fluids A, 2 (1990), 765777.Google Scholar
[42]Mandelbrot, B. B. and Ness, J. W. V., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422437.Google Scholar
[43]Vreman, B., Geurts, B., and Kuerten, H., Large-eddy simulation of the turbulent mixing layer using the Clark model, Theor. Comput. Fluid Dyn., 8 (1996), 309324.Google Scholar
[44]Vreman, B., Geurts, B., and Kuerten, H., Large-eddy simulation of the turbulent mixing layer, J. Fluid. Mech., 339 (1997), 357390.CrossRefGoogle Scholar
[45]Abry, P. and Sellan, F., The wavelet-based synthesis for the fractional Brownian motion proposed by F. Sellan and Y. Meyer: remarks and fast implementation, Appl. Comp. Harmonic Anal., 3 (1996), 377383.Google Scholar
[46]Narayanan, M. A. B., Universal trends observed in the maxima of the longitudinal velocity fluctuations and the zero crossings turbulent flows, AIAA J., 17 (1979), 527529.Google Scholar
[47]Sreenivasan, K. R., Prabhu, A. and Narasimha, R., Zero-crossings in turbulent signals,, J. Fluid Mech., 137 (1983), 251272.Google Scholar
[48]Kailasnath, P. and Sreenivasan, K. R., Zero crossings of velocity fluctuations in turbulent boundary layers, Phys. Fluids A, 5 (1993), 28792885.Google Scholar
[49]Sreenivasan, K. R. and Bershadskii, A., Clustering properties in turbulent signals, J. Stat Phys., 125 (2006), 11451157.Google Scholar
[50]Poggi, D. and Katul, G., Flume experiments on intermittency and zero-crossing properties of canopy turbulence, Phys. Fluids, 21 (2009), 65103.Google Scholar
[51]Cava, D., Katul, G. G., Molini, A. and Elefante, C., The role of surface characteristics on intermittency and zero-crossing properties of atmospheric turbulence, J. Geophys. Res., 117 (2012), D01104.Google Scholar
[52]Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. and Succi, S., Extended self-similarity in turbulent flows, Phys. Rev. E, 48 (1993), R29.Google Scholar
[53]Martin, J., Ooi, A., Chong, M. S. and Soria, J., Dynamics of the velocity gradient tensor invariants in isotropic turbulence, Phys. Fluids, 10 (1998), 23362346.CrossRefGoogle Scholar
[54]Meneveau, C., Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows, Annu. Rev. Fluid Mech., 43 (2011), 219245.Google Scholar
[55]Antonia, R. A., Chambers, A. J., Britz, D. and Browne, L. W. B., Organized structures in a turbulent plane jet: topology and contribution to momentum and heat transport, J. Fluid Mech., 172 (1986), 211229.Google Scholar