Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T03:32:51.760Z Has data issue: false hasContentIssue false

Double Exchange Model in Triangular Lattice Studied by Truncated Polynomial Expansion Method

Published online by Cambridge University Press:  20 August 2015

Gui-Ping Zhang*
Affiliation:
Department of Physics, Renmin University of China, Beijing 100872, China
*
*Corresponding author.Email:[email protected]
Get access

Abstract

The low temperature properties of double exchange model in triangular lattice are investigated via truncated polynomial expansion method (TPEM), which reduces the computational complexity and enables parallel computation. We found that for the half-filling case a stable 120° spin configuration phase occurs owing to the frustration of triangular lattice and is further stabilized by antiferromagnetic (AF) su-perexchange interaction, while a transition between a stable ferromagnetic (FM) phase and a unique flux phase with small finite-size effect is induced by AF superexchange interaction for the quarter-filling case.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Helmot, R. von, Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K., Giant negative magnetoresistance in perovskitelike La 2/3 Ba 1/3 MnO x ferromagnetic films, Phys. Rev. Lett., 71 (1993), 2331–2333.Google Scholar
[2] Jin, S., Tiefel, T. H., Mc Cormakc, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H., Thousandfold change in resistivity in magnetoresistive LaCaMnO films, Sci., 264 (1994), 413–415.Google Scholar
[3] Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y., Insulator-metal transition and giant magnetoresistance in La 1-x Sr x MnO 3 , Phys. Rev. B., 51 (1995), 14103–14109.CrossRefGoogle Scholar
[4] Chuang, Y.-D., Gromko, A. D., Dessau, D. S., Kimura, T., and Tokura, Y., Fermi surface nesting and nanoscale fluctuating charge/orbital ordering in colossal magnetoresistive oxides, Sci., 292 (2001), 1509–1513.Google ScholarPubMed
[5] Yunoki, S., Hu, J., Malvezzi, A. L., Moreo, A., Furukawa, N., and Dagotto, E., Phase separation in electronic models for manganites, Phys. Rev. Lett., 80 (1998), 845–848.CrossRefGoogle Scholar
[6] Motome, Y., and Furukawa, N., A Monte Carlo method for fermion systems coupled with classical degrees of freedom, J. Phys. Soc. Jpn., 68 (1998), 3853–3858.Google Scholar
[7] Furukawa, N., and Motome, Y., Monte carlo algorithm for the double exchange model optimized for parallel computations, Comput. Phys. Commun., 142 (2001), 410–413.CrossRefGoogle Scholar
[8] Furukawa, N., and Motome, Y., Order N Monte Carlo algorithm for fermion systems coupled with fluctuating adiabatical fields, J. Phys. Soc. Jpn., 73 (2004), 1482–1489.CrossRefGoogle Scholar
[9] Alvarez, G., Sen, C., Furukawa, N., Motome, Y., and Dagotto, E., The truncated polynomial expansion Monte Carlo method for fermion systems coupled to classical fields: a model independent implementation, Comput. Phys. Commun., 168 (2005), 32–45.CrossRefGoogle Scholar
[10] Sen, C., Alvarez, G., Motome, Y., Furukawa, N., Sergienko, I. A., Schulthess, T. C., Moreo, A., and Dagotto, E., One- and two-band models for colossal magnetoresistive manganites studied using the truncated polynomial expansion method, Phys. Rev. B., 73 (2006), 224430–224444.CrossRefGoogle Scholar
[11] Alvarez, G., and Schulthess, T. C., Calculation of dynamical and many-body observables for spin-fermion models using the polynomial expansion method, Phys. Rev. B., 73 (2006), 035117–035125.CrossRefGoogle Scholar
[12] Alvarez, G., Aliaga, H., Sen, C., and Dagotto, E., Fragility of the A-type AF and CE phases of manganites: insulator-to-metal transition induced by quenched disorder, Phys. Rev. B., 73 (2006), 224426–224438.CrossRefGoogle Scholar
[13] Sen, C., Alvarez, G., Aliaga, H., and Dagotto, E., Colossal magnetoresistance observed in Monte Carlo simulations of the one- and two-orbital models for manganites, Phys. Rev. B., 73 (2006), 224441–224453.CrossRefGoogle Scholar
[14] Takada, K., Sakurai, H., Takayama-Muromachi, E., Izumi, F., Dilanian, R. A., and Sasaki, T., Superconductivity in two-dimensional CoO 2 layers, Nature., 422 (2003), 53–55.CrossRefGoogle Scholar
[15] Alonso, J. L., Fernández, L. A., Guinea, F., Laliena, V., and Martín-Mayo, V., Hybrid Monte Carlo algorithm for the double exchange model, Nucl. Phys. B., 596 (2001), 587–610.CrossRefGoogle Scholar
[16] Agterberg, D. F., and Yunoki, S., Spin-flux phase in the Kondo lattice model with classical localized spins, Phys. Rev. B., 62 (2000), 13816–13819.CrossRefGoogle Scholar