Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T19:35:48.983Z Has data issue: false hasContentIssue false

Contact Angle Determination in Multicomponent Lattice Boltzmann Simulations

Published online by Cambridge University Press:  20 August 2015

Sebastian Schmieschek*
Affiliation:
Institute for Computational Physics, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Jens Harting*
Affiliation:
Institute for Computational Physics, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
*
Corresponding author.Email:[email protected]
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Tabeling, P., Introduction to Microfluidics, Oxford University Press, 2005.Google Scholar
[2]Young, T., An essay on the cohesion of fluids, Phil. Trans. Phys. Sci. Eng., 95(-1) (1805), 65–87.Google Scholar
[3]Wenzel, R. N., Surface roughness and contact angle, J. Phys. Chem., 53(9) (1949), 1466–1467.Google Scholar
[4]Cassie, A. B. D., Wettability of porous surfaces, Trans. Faraday. Soc., 40 (1944), 546–551.CrossRefGoogle Scholar
[5]Hyväluoma, J., and Harting, J., Slip flow over structured surfaces with entrapped microbub-bles, Phys. Rev. Lett., 100 (2008), 246001.Google Scholar
[6]Yeh, K.-Y., Yeh, J. C., and Changg, J., Contact angle hysteresis on regular pillar-like hydropho-bic surfaces, Langmuir., 24(1) (2008), 245–251.Google Scholar
[7]Dorrer, C., and Rühe, J., Condensation and wetting transitions on microstructured ultrahy-drophobic surfaces, Langmuir., 23(7) (2007), 3820–3824.Google Scholar
[8]Pirat, C., Sbragaglia, M., Peters, A. M., Borkent, B. M., Lammertink, R. G. H., Wessling, M., and Lohse, D., Multiple time scale dynamics in the breakdown of superhydrophobicity, Euro-phys. Lett., 81(6) (2008), 66002.CrossRefGoogle Scholar
[9]Kusumaatmaja, H., Blow, M. L., Dupuis, A., and Yeomans, J. M., The collapse transition on superhydrophobic surfaces, Europhys. Lett., 81(3) (2008), 36003.Google Scholar
[10]Vandembroucq, D., and Roux, S., Conformal mapping on rough boundaries,applications to harmonic problems, Phys. Rev. E., 55(5) (1997), 6171–6185.Google Scholar
[11]Marmur, A., From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials, Langmuir., 24(14) (2008), 7573– 7579.CrossRefGoogle ScholarPubMed
[12]Roach, P., Shirtcliffe, N., and Newton, M., Progess in superhydrophobic surface development, Soft. Matter., 4(2) (2008), 224–240.Google Scholar
[13]Bouzigues, C. I., Tabeling, P., and Bocquet, L., Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces, Phys. Rev. Lett., 101(11) (2008), 114503.Google Scholar
[14]Kunert, C., and Harting, J., Simulation of fluid flow in hydrophobic rough micro channels, Int. J. Comput. Fluid.Dyn., 22 (2008), 475–480.CrossRefGoogle Scholar
[15]Shan, X., and Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E., 47(3) (1993), 1815–1817.Google Scholar
[16]Shan, X., and Chen, H., Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E., 49(4) (1994), 2941–2948.Google Scholar
[17]Swift, M. R., Osborn, W. R., and Yeomans, J. M., Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. E., 75(5) (1995), 830–833.Google Scholar
[18]Swift, M. R., Orlandini, E., Osborn, W. R., and Yeomans, J. M., Lattice-Boltzmann simulations of liquid-gas and binary fluid mixtures, Phys. Rev. E., 54(5) (1996), 5041–5052.CrossRefGoogle Scholar
[19]Gunstensen, A. K., Rothman, D. H., Zaleski, S., and Zanetti, G., Lattice Boltzmann model of immiscible fluids, Phys. Rev. A., 43(8) (1991), 4320–4327.Google Scholar
[20]Harting, J., Kunert, C., and Herrmann, H., Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels, Europhys. Lett., 75(2) (2006), 328–334.Google Scholar
[21]Kunert, C., and Harting, J., Roughness induced apparent boundary slip in microchannel flows, Phys. Rev. Lett., 99 (2007), 176001.Google Scholar
[22]Kunert, C., and Harting, J., On the effect of surfactant adsorption and viscosity change on apparent slip in hydrophobic microchannels, Prog. CFD., 8 (2008), 197–205.Google Scholar
[23]Benzi, R., Biferale, L., Sbragaglia, M., Succi, S., and Toschi, F., Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle, Phys. Rev. E., 74 (2006), 021509.Google Scholar
[24]Huang, H., Thorne, D. T., Schaap, M.G., and Sukop, M. C., Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models, Phys. Rev. E., 76 (2007), 066701.CrossRefGoogle ScholarPubMed
[25]Higuera, F. J., Succi, S., and Benzi, R., Lattice gas dynamics with enhanced collisions, Euro-phys. Lett., 9(4) (1989), 345–349.Google Scholar
[26]Bhatnagar, P. L., Gross, E. P., and Krook, M., Model for collision processes in gases I. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94(3) (1954), 511–525.Google Scholar
[27]Love, P. J., Nekovee, M., Coveney, P. V., Chin, J., González-Segredo, N., and Martin, J. M. R., Simulations of amphiphilic fluids using mesoscale lattice-Boltzmann and lattice-gas methods, Comput. Phys. Commun., 153 (2003), 340–358.Google Scholar
[28]Harting, J., Harvey, M., Chin, J., Venturoli, M., and Coveney, P. V., Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational grids, Phil. Trans. R. Soc. London. A., 363 (2005), 1895–1915.Google Scholar
[29]Chen, S., Chen, H., Martínez, D., and Matthaeus, W. H., Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett., 67(27) (1991), 3776–3779.Google Scholar
[30]Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, 2001.CrossRefGoogle Scholar
[31]de Gennes, P. G., Wetting: statics and dynamics, Rev. Mod. Phys., 57 (1985), 827–863.Google Scholar
[32]González-Segredo, N., and Coveney, P. V., Coarsening dynamics of ternary amphiphilic fluids and the self-assembly of the gyroid and sponge mesophases: lattice-Boltzmann simulations, Phys. Rev. E., 69 (2004), 061501.Google Scholar