Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T15:12:51.887Z Has data issue: false hasContentIssue false

Construction and Analysis of an Adapted Spectral Finite Element Method to Convective Acoustic Equations

Published online by Cambridge University Press:  22 June 2016

Andreas Hüppe*
Affiliation:
TU Wien, Institute of Mechanics and Mechatronics, Getreidemarkt 9/E325, 1060 Wien, Austria
Gary Cohen*
Affiliation:
Inria-CNRS-ENSTA, Saclay Ile-de-France, 91120 Palaiseau, France
Sébastien Imperiale*
Affiliation:
Inria, Saclay Ile-de-France, 91120 Palaiseau, France
Manfred Kaltenbacher*
Affiliation:
TU Wien, Institute of Mechanics and Mechatronics, Getreidemarkt 9/E325, 1060 Wien, Austria
*
*Corresponding author. Email addresses:[email protected] (A. Hüppe), [email protected] (G. Cohen), [email protected] (S. Imperiale), [email protected] (M. Kaltenbacher)
*Corresponding author. Email addresses:[email protected] (A. Hüppe), [email protected] (G. Cohen), [email protected] (S. Imperiale), [email protected] (M. Kaltenbacher)
*Corresponding author. Email addresses:[email protected] (A. Hüppe), [email protected] (G. Cohen), [email protected] (S. Imperiale), [email protected] (M. Kaltenbacher)
*Corresponding author. Email addresses:[email protected] (A. Hüppe), [email protected] (G. Cohen), [email protected] (S. Imperiale), [email protected] (M. Kaltenbacher)
Get access

Abstract

The paper addresses the construction of a non spurious mixed spectral finite element (FE) method to problems in the field of computational aeroacoustics. Based on a computational scheme for the conservation equations of linear acoustics, the extension towards convected wave propagation is investigated. In aeroacoustic applications, the mean flow effects can have a significant impact on the generated sound field even for smaller Mach numbers. For those convective terms, the initial spectral FE discretization leads to non-physical, spurious solutions. Therefore, a regularization procedure is proposed and qualitatively investigated by means of discrete eigenvalues analysis of the discrete operator in space. A study of convergence and an application of the proposed scheme to simulate the flow induced sound generation in the process of human phonation underlines stability and validity.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lighthill, M. J., On sound generated aerodynamically I. General theory, Proceedings of the Royal Society of London 211 (1951) 564587.Google Scholar
[2] Bailly, C., Juvé, D., Numerical solution of acoustic propagation problems using linearized euler equations, American Institute of Aeronautics and Astronautics 38 (2000) 2229.CrossRefGoogle Scholar
[3] Ewert, R., Schröder, W., Acoustic perturbation equations based on flow decomposition via source filtering, Journal of Computational Physics 188 (2003) 365398.CrossRefGoogle Scholar
[4] Seo, J., Moon, Y., Perturbed compressible equations for aeroacoustic noise prediction at low mach numbers, AIAA Journal 43 (2005) 17161724.Google Scholar
[5] Munz, C., Dumbser, M., Roller, S., Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature, Journal of Computational Physics 224 (2007) 352364.Google Scholar
[6] Hesthaven, J. S., Warburton, T., Nodal discontinuous Galerkin methods, Texts in Applied Mathematics, Springer, 2008.CrossRefGoogle Scholar
[7] Delorme, P., Mazet, P. A., Peyret, C., Ventribout, Y., Computational aeroacoustics applications based on a discontinuous galerkin method, Comptes rendus de l'Academie des sciences – Serie IIb – Mécanique/Mechanics 333 (2005) 676682.Google Scholar
[8] Bauer, M., Dierke, J., Ewert, R., Application of a discontinuous galerkin method to predict airframe noise, in: 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), 2009.Google Scholar
[9] Léger, R., Peyret, C., Piperno, S., Coupled discontinuous galerkin/finite difference solver on hybrid meshes for computational aeroacoustics, AIAA Journal 50 (2012) 338349.Google Scholar
[10] Castel, N., Cohen, G., Duruflé, M., Application of discontinuous galerkin spectral method on hexahedral elements for aeroacoustic, Journal of Computational Acoustics 17,2 (2009) 175196.Google Scholar
[11] Assous, F., Degond, P., Heintze, E., Raviart, J. S. P. A., On a finite-element method for solving the three-dimensional Maxwell equations, J. Comput. Phys. 109 (2) (1993) 222237.Google Scholar
[12] Bonnet-BenDhia, A. S., Legendre, G., Luneville, E., Analyse mathematique de l'equation de galbrun en ecoulement uniforme, Comptes Rendus de l'Academie des Sciences - Serie IIB - Mecanique 329 (2001) 601606.Google Scholar
[13] Cohen, G., Duruflé, M., Non spurious spectral-like element methods for Maxwell's equations, J. Comp. Math. 25 (3) (2007) 282302.Google Scholar
[14] Seo, J. H., Moon, Y. J., Linearized perturbed compressible equations for low mach number aeroacoustics, Journal of Computational Physics 218 (2006) 702719.Google Scholar
[15] Brezzi, F., Fortin, M., Mixed and Hybrid Finite Element Methods, Springer, New York, 1991.CrossRefGoogle Scholar
[16] Becache, E., Tsogka, C., Joly, P., An analysis of new mixed finite elements for the approximation of wave propagation problems, SINUM 37 (2000) 10531084.Google Scholar
[17] Benzi, M., Golub, G. H., Liesen, J., Numerical solution of saddle point problems, ACTA NUMERICA 14 (2005) 1137.Google Scholar
[18] Cohen, G., Fauqueux, S., Mixed finite elements with mass-lumping for the transient wave equation, Journal of Computational Acoustics 8 (2000) 171188.CrossRefGoogle Scholar
[19] Hüppe, A., Kaltenbacher, M., Advanced spectral finite element method for computational acoustics in the mid-frequency range, in: Proceedings of the ISMA 2010, 2010.Google Scholar
[20] Hüppe, A., Kaltenbacher, M., Spectral finite elements for computational aeroacoustics using acoustic pertrubation equations, Journal of Computational Acoustics 20 (2).Google Scholar
[21] Raviart, P. A., Thomas, J. M., A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics 606 (1977) 292315.Google Scholar
[22] Brooks, A. N., Hughes, T. J. R., Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations, Computer Methods in Applied Mechanics and Engineering 32 (1982) 199259. doi:10.1016/0045-7825(82)90071-8.Google Scholar
[23] Morinishi, Y., Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-mach number flows, Journal of Computational Physics 229 (2010) 276300.Google Scholar
[24] Brezzi, F., Marini, L., Suli, E., Discontinuous Galerkin methods for first-order hyperbolic problems, Mathematical Models and Methods in Applied Sciences 14 (2004) 18931903.Google Scholar
[25] Tam, C. K., Benchmark problems and solutions, in: ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, 1995.Google Scholar
[26] Geuzaine, C., Remacle, J.-F., Gmsh Reference Manual, http://www.geuz.org/gmsh, 1st Edition (Aug. 2003).Google Scholar
[27] Zörner, S., Kaltenbacher, M., Fluid-structure-acoustic interaction algorithms and implementations using the finite element method, in: Eccomas 2010, 2010.Google Scholar
[28] Hüppe, A., Kaltenbacher, M., Stable matched layer for the conservation equations of acoustics in the time domain, Journal of Computational Acoustics 20 (1).Google Scholar
[29] Šidlof, P., Horáček, J., Řidký, V., Parallel CFD simulation of flow in a 3d model of vibrating human vocal folds, Computers & Fluids (0), article in press. doi:10.1016/j.compfluid.2012.02.005.Google Scholar