Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T02:31:08.697Z Has data issue: false hasContentIssue false

Computational Investigation of the Interaction Between Hydrogen Atoms and an Intense Circularly Polarized Laser Field

Published online by Cambridge University Press:  20 August 2015

Lifeng Yang
Affiliation:
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China Graduate School of the Chinese Academy of Sciences, Beijing 10039, China
Wang Xu*
Affiliation:
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Qiren Zhang
Affiliation:
Departments of Technical Physics, Peking University, Beijing 100871, China
Wen Luo
Affiliation:
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China Graduate School of the Chinese Academy of Sciences, Beijing 10039, China
Qiangyan Pan
Affiliation:
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Xiaolu Cai
Affiliation:
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China Graduate School of the Chinese Academy of Sciences, Beijing 10039, China
Gongtao Fan
Affiliation:
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China Graduate School of the Chinese Academy of Sciences, Beijing 10039, China
Yongjiang Li
Affiliation:
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China Graduate School of the Chinese Academy of Sciences, Beijing 10039, China
Benji Xu
Affiliation:
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Zhe Yan
Affiliation:
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Guangwei Fan
Affiliation:
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China Graduate School of the Chinese Academy of Sciences, Beijing 10039, China
Zhendong An
Affiliation:
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China Graduate School of the Chinese Academy of Sciences, Beijing 10039, China
*
*Corresponding author.Email:[email protected]
Get access

Abstract

The study of interactions between a high-power laser and atoms has been one of the fundamental and interesting topics in strong field physics for decades. Based on a nonperturbative model, ten years ago, we developed a set of programs to facilitate the study of interactions between a circularly polarized laser and atomic hydrogen. These programs included only contribution from the bound states of the hydrogen atom. However, as the laser intensity increases, contribution from continuum states to the excitation and ionization processes becomes larger and can no longer be neglected. Furthermore, because the original code is not able to add this contribution directly due to its many disadvantages, a major upgrade of the code is required before including the contribution from continuum states in future. In this paper, first we deduce some important formulas for contribution of continuum states and present modifications and tests for the upgraded code in detail. Second we show some comparisons among new results, old results from the original codes and the available experimental data. Overall the new result agrees with experimental data well. Last we present our calculation of above-threshold ionization (ATI) rate and compare it with a pertuba-tive calculation. The comparison shows that our nonperturbative calculation can also produce ATI peak suppression.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Göeppert-Mayer, M., Ann. Phys., 9 (1931), 273295.Google Scholar
[2]Voronov, G. S. and Delone, N. B., Sov. Phys. JETP Lett., 1 (1965), 66.Google Scholar
[3]Agostini, P.et al., IEEE J. Quantum Elect., 4 (1968), 667669.Google Scholar
[4]Maiman, T. H., Nature, 187 (1960), 493494.Google Scholar
[5]LuVan, M., Mainfray, G., Manus, C. and Tugov, I., Phys. Rev. A, 7 (1973), 9198.Google Scholar
[6]Fabre, F., Petite, G., Agostini, P. and Clement, M., J. Phys. B, 15 (1982), 1353.CrossRefGoogle Scholar
[7]Petite, G.et al., Phys. Rev. A, 29 (1984), 26772689.Google Scholar
[8]Lambropoulos, P., Adv. At. Mol. Phys., 12 (1976), 87164.Google Scholar
[9]Freeman, R. R.et al., Phys. Rev. Lett., 59 (1987), 10921095.CrossRefGoogle Scholar
[10]Agostini, P.et al., Phys. Rev. Lett., 42 (1979), 11271130.Google Scholar
[11]McPherson, A.et al., J. Opt. Soc. Am. B, 4 (1987), 595601.Google Scholar
[12]Ferray, M.et al., J. Phys. B, 21 (1988), L31L35.CrossRefGoogle Scholar
[13]L’Huillier, A.et al., in: Multiphoton Processes, ed. Mainfray, G., Agostini, P., Saclay, CEA, 1991, pp. 45.Google Scholar
[14]Corkum, P. B., Phys. Rev. Lett., 71 (1993), 19941997.Google Scholar
[15]Su, Q., Eberly, J. H. and Javanainen, J., Phys. Rev. Lett., 64 (1990), 862865.Google Scholar
[16]Eberly, J. H. and Kulander, K.C., Science, 262 (1993), 12291233.Google Scholar
[17]Druten, N.J.vanet al., Phys. Rev. A, 55 (1997), 622629.Google Scholar
[18]Piraux, B. and Potvliege, R. M., Phys. Rev. A, 57 (1998), 50095012.Google Scholar
[19]Colosimo, P.et al., Nature Phys., 4 (2008), 386389.CrossRefGoogle Scholar
[20]Blaga, C. I.et al., Nature Phys., 5 (2009), 335338.Google Scholar
[21]Quan, W.et al., Phys. Rev. Lett., 103 (2010), 093001.Google Scholar
[22]Wark, J., Nature, 466 (2010), 35.Google Scholar
[23]Young, L.et al., Nature, 466 (2010), 56.Google Scholar
[24]Meyer, M.et al., Phys. Rev. Lett., 104 (2010), 213001.Google Scholar
[25]Ackermann, W.et al., Nature Photonics, 1 (2007), 336342.Google Scholar
[26]Emma, P., in: Proceedings of the 23rd Particle Accelerator Conference, Piscataway, Vancouver, Canada, 2009, TH3PBI01.Google Scholar
[27]Kelleher, D. E., Ligare, M. and Brewer, L. R., Phys. Rev. A, 31 (1985), 27472749.CrossRefGoogle Scholar
[28]Muller, H. G.et al., Phys. Rev. A, 34 (1986), 236243.Google Scholar
[29]Rottke, H., Wolff, B., Brickwedde, M., Feldmann, D. and Welge, K. H., Phys. Rev. Lett., 64 (1990), 404407.Google Scholar
[30]Kyrala, G. A. and Nichols, T. D., Phys. Rev. A, 44 (1991), R1450R1453.Google Scholar
[31]Rottke, H.et al., Phys. Rev. A, 49 (1994), 48374851.Google Scholar
[32]Reiss, H. R., Phys. Rev. A, 22 (1980), 17861813.Google Scholar
[33]Shakeshaft, R., Potvliege, R. M., Dörr, M. and Cooke, W. E., Phys. Rev. A, 42 (1990), 16561668.Google Scholar
[34]Dörr, M., Potvliege, R. M., Proulx, D. and Shakeshaft, R., Phys. Rev. A, 43 (1991), 37293740.CrossRefGoogle Scholar
[35]Potvliege, R. M., in: Atoms in Intense Laser Fields, ed. Gavrila, M., Academic, New York, 1992, pp. 373.Google Scholar
[36]Pont, M. and Gavrila, M., Phys. Rev. Lett., 65 (1990), 23622365.CrossRefGoogle Scholar
[37]Chism, W., Choi, D. I. and Reich, L. E., Phys. Rev. A, 61 (2000), 054702.Google Scholar
[38]Choi, D. I. and Chism, W., Phys. Rev. A, 66 (2002), 025401.CrossRefGoogle Scholar
[39]Boca, M., Muller, H. G. and Gavrila, M., J. Phys. B, 37 (2004), 147.Google Scholar
[40]Zhang, Q. R., Commun. Theor. Phys., 28 (1997), 335.Google Scholar
[41]Zhang, Q. R., Phys. Lett. A, 216 (1996), 125128.CrossRefGoogle Scholar
[42]Zhang, D. and Zhang, Q. R., Commun. Theor. Phys., 36 (2001), 685.Google Scholar
[43]Liu, X. T. and Zhang, Q. R., Commun. Theor. Phys., 41 (2004), 461464.Google Scholar
[44]Xiong, C. L. and Zhang, Q. R., Commun. Theor. Phys., 42 (2004), 891894.Google Scholar
[45]Zhang, Q. R., Commun. Theor. Phys., 47 (2007), 10171023.Google Scholar
[46]Grochmalicki, J., Kuklinski, J. R. and Lewenstein, M., J. Phys. B, 19 (1986), 36493668.Google Scholar
[47]Delone, N. B., Goreslavsky, S. P. and Krainov, V. P., J. Phys. B, 22 (1989), 29412945.Google Scholar
[48]Barth, W., Martin, R. S. and Wilkinson, H. J., Numer. Math., 9 (1967), 386393.Google Scholar
[49]Wilkinson, J. H., Numer. Math., 4 (1962), 368376.CrossRefGoogle Scholar
[50]J.H.Wilkinson, , in: The Algebraic Eigenvalue Problem, Clarendon University, Oxford, 1965, pp. 345.Google Scholar
[51]Conte, S. D. and C.deBoor, , Elementary Numerical Analysis, McGraw-Hill, New York, 1972.Google Scholar
[52]Protopapas, M., Keitel, C. H. and Knight, P. L., Rep. Prog. Phys., 60 (1997), 389486.CrossRefGoogle Scholar
[53]Zhang, J. T. and Nakajima, Takashi, Phys. Rev. A, 75 (2007), 043403.Google Scholar
[54]Khristenko, S. V. and Vetchinkin, S. I., Opt. Specktrosk., 40 (1976), 417432.Google Scholar
[55]Chu, S. I. and Cooper, J., Phys. Rev. A, 32 (1985), 27692775.CrossRefGoogle Scholar
[56]Keldysh, L. V., ZhEksp. Teor. Fiz., 47 (1964), 19451957[Sov. Phys. JETP, 20 (1965), 13071314].Google Scholar
[57]Bucksbaum, P. H.et al., Phys. Rev. Lett., 56 (1986), 25902593.Google Scholar
[58]Gontier, Y. and Trahin, M., J. Phys. B, 13 (1980), 4383.Google Scholar
[59]Yergeau, F., Petite, G. and Agostini, P., J. Phys. B, 19 (1986), L663.Google Scholar