Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T05:59:01.508Z Has data issue: false hasContentIssue false

An Efficient Two-Grid Scheme for the Cahn-Hilliard Equation

Published online by Cambridge University Press:  28 November 2014

Jie Zhou
Affiliation:
School of Mathematics and, Computational Science in Xiangtan University, Xiangtan 411105, China
Long Chen*
Affiliation:
Department of Mathematics, University of California, Irvine, CA 92697-3875, USA
Yunqing Huang
Affiliation:
School of Mathematics and, Computational Science in Xiangtan University, Xiangtan 411105, China Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education, Xiangtan University, Hunan 411105, China
Wansheng Wang
Affiliation:
School of Mathematics and Computational Science, Changsha University of Science & Technology, Yuntang Campus, 410114 Changsha, China
*
*Email addresses:[email protected](J. Zhou), [email protected](L. Chen), [email protected](Y. Huang), [email protected](W.Wang)
Get access

Abstract

A two-grid method for solving the Cahn-Hilliard equation is proposed in this paper. This two-grid method consists of two steps. First, solve the Cahn-Hilliard equation with an implicit mixed finite element method on a coarse grid. Second, solve two Poisson equations using multigrid methods on a fine grid. This two-grid method can also be combined with local mesh refinement to further improve the efficiency. Numerical results including two and three dimensional cases with linear or quadratic elements show that this two-grid method can speed up the existing mixed finite method while keeping the same convergence rate.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aristotelous, A. C., Karakshian, O. and Wise, S. M., A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver, Discrete and Continuous Dynamical System-Series B, 18(9):22112238,2013.Google Scholar
[2]Ayuso, B., GarcIa-Archilla, B. and Novo, J., The postprocssed mixed finite element method for the Navier-Stokes equations, SIAM J. Numer. Anal., 43:10911111,2005.Google Scholar
[3]Brandt, A., Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, St. Augustin: Gesellschaft für Mathematik und Datenverarbeitung, 1984.Google Scholar
[4]Cahn, J. W., Hilliard, J. E., Free energy of a nonuniform system I: Interfacial free energy, J. Che. Phys., 28:258267,1958.Google Scholar
[5]Cahn, J. W., Hilliard, J. E., Free energy of a nonuniform system II: Thermodynamic basis, J. Che. Phys., 30:11211124, 1959.Google Scholar
[6]Cahn, J. W., Hilliard, J. E., Free energy of a nonuniform system III: Nucleation in a two-component incompressible fluid, J. Che. Phys., 31(3):688699,1959.CrossRefGoogle Scholar
[7]Collins, C., Shen, J. and Wise, S. M., An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system, in press, 2013.Google Scholar
[8]Chen, F., Shen, J., Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems, Comm. Comp. Phys., 13(5):11891208,2013.Google Scholar
[9]Chen, L., iFEM: An Integrated Finite Element Methods Package in MATLAB, Technical Report, University of California at Irvine, (2009).Google Scholar
[10]deFrutos, J., Garcia-Archilla, B. and Novo, J., The postprocessed mixed finite element method for the Navier-Stokes equations: Improved error bounds, SIAM J. Numer. Math., 46 (2007), 201230.Google Scholar
[11]Dawson, C. N., Wheeler, M. F., Two-grid methods for mixed finite element approximations of nonlinear parabolic equations, Cont. Math., 180:191191,1994.Google Scholar
[12]Dawson, C. N., Wheeler, M. F., A two-grid finite difference scheme for nonlinear parabolic equations, SIAM J. Numer. Anal., 35(2):435452,1998.CrossRefGoogle Scholar
[13]Elliott, C. M., Zheng, S., On the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 96(4):339357,1986.Google Scholar
[14]Elliott, C. M., Donald, A., A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation, SIAM J. Numer. Anal., 26(4):884903,1989.CrossRefGoogle Scholar
[15]Elliott, C. M., Donald, A. and Milner, F. A., A second order splitting method for the Cahn-Hilliard equation, Numer. Math., 54(5):575590,1989.Google Scholar
[16]Eyre, D. J., Unconditionally gradient stable time marching the Cahn-Hilliard equation, MRS. Proc., 529:3946,1998.Google Scholar
[17]Feng, X. B., Prohl, A., Error analysis of a mixd finite element method for the Cahn-Hilliard equation, Numer. Math., 99:4784, 2004.Google Scholar
[18]Feng, X. B., Wu, H. J., A posteriori error estimates for finite element approximation of the Cahn-Hilliard eqatuion and the Hele-Shaw flow, J. Comp. Math., 26(6):767796,2008.Google Scholar
[19]Frutos, J., Garcia-Archilla, B. and Novo, J., A postprocessed Galerkin method with Chebyshev or Legendre polynomials, Numer. Math., 86(3):419442,2000.CrossRefGoogle Scholar
[20]Frutos, J., Garcia-Archilla, B. and Novo, J., The postprocessed mixed finite-element method for the Navier-Stokes equations: Refined error bounds, SIAM J. Numer. Anal., 46(1):201230, 2007.Google Scholar
[21]Frutos, J., Novo, J., Postprocessing the linear finite element method, SIAM J. Numer. Anal., 40(3):805819,2002.Google Scholar
[22]GarcIa-Archilla, B., Titi, E., Postprocessing the Galerkin Method: The finite-element case, SIAM J. Numer. Anal., 37(2):470499,2000.Google Scholar
[23]Girault, V., Lions, J., Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra, Port. Math., 58(1):2558,2001.Google Scholar
[24]He, Y. N., Liu, Y. X., Stability and convergence of the spectral Galerkin method for the Cahn-Hilliard equation, Numer. Meth. PDE., 24(6):14851500,2008.CrossRefGoogle Scholar
[25]He, Y. N., Liu, Y. X. and Tang, T., On large time-stepping methods for the Cahn-Hilliard equation, Appl. Numer. Math., 57(5):616628,2007.CrossRefGoogle Scholar
[26]Hu, X., Cheng, X., Acceleration of a two-grid method for eigenvalue problems, Math. Comp., 80(275):12871301,2011.Google Scholar
[27]Hu, Z., Wise, S., Wang, C. and Lowengrub, J., Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J. Comp. Phys., 228:53235339,2009.Google Scholar
[28]Kaya, S., Riviere, B., A two-grid stabilization method for solving the steady-state Navier-Stokes equations, Numer. Meth. PDE., 212(1):288304,2006.Google Scholar
[29]Kay, D., Welfor, R., A multigrid finite element solver for the Cahn-Hilliard equation, J. Che. Phys., 22:728743, 2005.Google Scholar
[30]Langer, J. S., Baron, M. and Miller, H. D., New computational method in the theory of spinodal decomposition, Physical Review A, 11(4):14171729,1975.Google Scholar
[31]Lubomir, B., Robert, N., Adaptive finite element methods for Cahn-Hilliard equations, J. Comp. Appl. Math., 218(1):211, 2008.Google Scholar
[32]Marion, M., Xu, J.Error estimates on a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Numer. Anal., 32(4):11701184,1995.Google Scholar
[33]Margolin, L. G., Titi, E. S. and Wynne, S., The postprocessing Galerkin and nonlinear Galerkin methods: A truncation analysis point of view, SIAM J. Numer. Anal., 41:695714,2004.CrossRefGoogle Scholar
[34]Shen, J., Yang, X. F., Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete and Continuous Dynamical Systems, Series A, 28:16691691,2010.Google Scholar
[35]Shen, J., Yang, X. F., Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows, Chinese Annals of Mathematics, Series B, 31(5):743758,2010.Google Scholar
[36]Shen, J., Wang, C., Wang, X. M. and Wise, S.M., Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50(1):105125,2012.Google Scholar
[37]Wang, W. S., Long-time behavior of the two-grid finite element method for fully discrete semilinear evolution equations with positive memory, J. Comp. Appl. Math., 250:161174, 2013.Google Scholar
[38]Wang, W. S., Chen, L. and Zhou, J., Postprocessing mixed finite element methods for solving Cahn-Hilliard equation: Methods and error analysis, submit.Google Scholar
[39]Wells, G. N., Kuhl, E. and Garikipati, K., A discontinuous Galerkin method for the Cahn-Hilliard equation, J. Comp. Phys., 218(2):860877,2006.Google Scholar
[40]Wise, S., Wang, C. and Lowengrub, J., An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47:22692288,2009.CrossRefGoogle Scholar
[41]Wise, S. M., Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, J. Sci. Comp., 44(1):3868,2010.Google Scholar
[42]Wodo, O., Baskar, G., Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem, J. Comp. Phys., 230(15):60376060,2011.Google Scholar
[43]Xia, Y. H., Xu, Y. and Shu, C. W., Local discontinuous Galerkin methods for the Cahn-Hilliard type equations, J. Comp. Phys., 227(1):472491,2007.Google Scholar
[44]Xu, J., A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J. Numer. Anal., 29(2):303319, 1992.Google Scholar
[45]Xu, J., A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comp., 15(1):231237,1994.Google Scholar
[46]Xu, J., Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33(5):17591777,1996.Google Scholar
[47]Xu, J., Zhou, A., A two-grid discretization scheme for eigenvalue problems, Math. Comp., 70(233):1725,2001.Google Scholar
[48]Yan, Y., Postprocessing the finite element-method for semilinear parabolic problems, SIAM J. Numer. Anal., 44:16811702,2006.CrossRefGoogle Scholar
[49]Zhang, S., Wang, M., A nonconforming finite element method for the Cahn-Hilliard equation, J. Comp. Phys., 229(14):73617372, 2010.CrossRefGoogle Scholar
[50]Zhong, L., Shu, S., Wang, J. and Xu, J., Two-grid methods for time-harmonic Maxwell equations, Numer. Lin. Alge. Appl., 20(1):93111,2013.Google Scholar
[51]Zhou, J., Hu, X., Zhong, L., Shu, S., and Chen, L., Two-grid methods for Maxwell eigenvalue problems, SIAM J. Numer. Anal., 52(4):20272047,2014.Google Scholar