Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T08:52:24.490Z Has data issue: false hasContentIssue false

Absorbing Boundary Conditions for Solving N-Dimensional Stationary Schrödinger Equations with Unbounded Potentials and Nonlinearities

Published online by Cambridge University Press:  20 August 2015

Pauline Klein*
Affiliation:
Institut Elie Cartan Nancy, Nancy-Université, CNRS UMR 7502, INRIA CORIDA Team, Boulevard des Aiguillettes B.P. 239, 54506 Vandœuvre-lès-Nancy, France
Xavier Antoine*
Affiliation:
Institut Elie Cartan Nancy, Nancy-Université, CNRS UMR 7502, INRIA CORIDA Team, Boulevard des Aiguillettes B.P. 239, 54506 Vandœuvre-lès-Nancy, France
Christophe Besse*
Affiliation:
Laboratoire Paul Painlevé, CNRS UMR 8524, Simpaf Project Team-Inria CR Lille Nord Europe, Université des Sciences et Technologies de Lille, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France
Matthias Ehrhardt*
Affiliation:
Lehrstuhl für Angewandte Mathematik und Numerische Analysis, Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaufistr. 20, 42119 Wuppertal, Germany
*
Get access

Abstract

We propose a hierarchy of novel absorbing boundary conditions for the one-dimensional stationary Schrödinger equation with general (linear and nonlinear) potential. The accuracy of the new absorbing boundary conditions is investigated numerically for the computation of energies and ground-states for linear and nonlinear Schrödinger equations. It turns out that these absorbing boundary conditions and their variants lead to a higher accuracy than the usual Dirichlet boundary condition. Finally, we give the extension of these ABCs to N-dimensional stationary Schrödinger equations.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Antoine, X., Arnold, A., Besse, C., Ehrhardt, M. and Schädle, A., A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys., 4(4) (2008), 729–796.Google Scholar
[2]Antoine, X., Besse, C. and Klein, P., Absorbing boundary conditions for the one-dimensional Schrödinger equation with an exterior repulsive potential, J. Comput. Phys., 228(2) (2009), 312–335.Google Scholar
[3]Antoine, X., Besse, C., Ehrhardt, M. and Klein, P., Modeling boundary conditions for solving stationary Schrödinger equations, Report Preprint 10/04 (http://www.math.uni-wupperta l.de), Lehrstuhl für Angewandte Mathematik und Numerische Mathematik.Google Scholar
[4]Bao, W., Chern, I.-L. and Lim, F. Y., Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates, J. Comput. Phys., 219(2) (2006), 836–854.CrossRefGoogle Scholar
[5]Bao, W., Cai, Y. and Wang, H., Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates, J. Comput. Phys., 229(20) (2010), 7874–7892.CrossRefGoogle Scholar
[6]Bao, W., Li, H. and Shen, J., A Generalized-Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates, SIAM J. Sci. Comput., 31(5) (2009), 3685–3711.Google Scholar
[7]Bao, W. and Shen, J., A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates, J. Comput. Phys., 227(23) (2008), 9778–9793.Google Scholar
[8]Ledoux, V., Van, M. Daele and Vanden Berghe, G., MATSLISE: A MATLAB package for the numerical solution of Sturm-Liouville and Schrödinger equations, ACM Trans. Math. Softw., 31(4) (2005), 532–554.Google Scholar
[9]Ledoux, V., Ixaru, L. G., Rizea, M., Van Daele, M. and Vanden Berghe, G., Solution of the Schrödinger equation over an infinite integration interval by perturbation methods, revisited, Comput. Phys. Commun., 175(9) (2006), 612–619.CrossRefGoogle Scholar
[10]Ledoux, V., Study of Special Algorithms for Solving Sturm-Liouville and Schrödinger Equations, Ph.D. Thesis, Dept. of Applied Mathematics and Computer Science, Ghent University, 2007.Google Scholar
[11]Ben Abdallah, N., Degond, P. and Markowich, P. A., On a one-dimensional Schrödinger-Poisson scattering model, Z. Angew. Math. Phys., 48(1) (1997), 135155.Google Scholar
[12]Arnold, A., Mathematical concepts of open quantum boundary conditions, Trans. Theory Stat. Phys., 30 (2001), 561584.Google Scholar
[13]Lent, C. and Kirkner, D., The quantum transmitting boundary method, J. Appl. Phys., 67(10) (1990), 63536359.Google Scholar
[14]Kirkner, D., Lent, C. and Sivaprakasam, S., The numerical simulation of electron transmission through a two-dimensional quantum device by the finite element method, Int. J. Numer. Meth. Eng., 29 (1990), 15271537.Google Scholar
[15]Heinen, M. and Kull, H.-J., Radiation boundary conditions for the numerical solution of the three-dimensional time-dependent Schrödinger equation with a localized interaction, Phys. Rev. E, 79(5) (2009), 056709.Google Scholar
[16]Heinen, M. and Kull, H.-J., Numerical calculation of strong-field laser-atom interaction: an approach with perfect reflection-free radiation boundary conditions, Laser Phys., 20(3) (2010), 581590.CrossRefGoogle Scholar
[17]Ehrhardt, M. and Mickens, R. E., Solutions to the discrete Airy equation: application to parabolic equation calculations, J. Comput. Appl. Math., 172(1) (2004), 183206.Google Scholar
[18]Ehrhardt, M. and Zisowsky, A., Fast calculation of energy and mass preserving solutions of Schrödinger-Poisson systems on unbounded domains, J. Comput. Appl. Math., 187(1) (2006), 128.CrossRefGoogle Scholar
[19]Moyer, C., Numerov extension of transparent boundary conditions for the Schrödinger equation in one dimension, Phys, Am. J.., 72(3) (2004), 351358.Google Scholar
[20]Moyer, C., Numerical solution of the stationary state Schrödinger equation using transparent boundary conditions, Comput. Sci. Eng., 8(4) (2006), 3240.CrossRefGoogle Scholar
[21]Ehrhardt, M. and Zheng, C., Exact artificial boundary conditions for problems with periodic structures, J. Comput. Phys., 227(14) (2008), 68776894.Google Scholar
[22]Burgnies, L., Mècanismes de Conduction en Règime Ballistique dans les Dispositifs Electroniques Quantiques, Ph.D. thesis, Universitè des Sciences et Technologies de Lille, 1997.Google Scholar
[23]Frensley, W., Boundary conditions for open quantum driven far from equilibrium, Rev. Mod. Phys., 62 (1990), 745791.Google Scholar
[24]Markowich, P., Ringhofer, C. and Schmeiser, C., Semiconductor Equations, Springer, New-York, 1990.Google Scholar
[25]Schmeiser, C., Computational methods for semiclassical and quantum transport in semiconductor devices, Acta. Numer., 3 (1997), 485521.Google Scholar
[26]Taylor, M., Pseudodifferential Operators, Vol. 34 of Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1981.Google Scholar
[27]Chazarain, J. and Piriou, A., Introduction to the Theory of Linear Partial Differential Equations, North-Holland, Amsterdam/New-York, 1982.Google Scholar
[28]Shao, H. and Wang, Z., Arbitrarily precise numerical solutions of the one-dimensional Schrödinger equation, Comput. Phys. Commun., 180(1) (2009), 17.CrossRefGoogle Scholar
[29]Klein, P., Construction et Analyse de Conditions aux Limites Artificielles Pour des Equations de Schrödinger avec Potentiels et non Linèaritès, Ph.D. thesis, Nancy Universitè, France (http://www.iecn.u-nancy.fr/~klein/These_PK_hr.pdf), 2010.Google Scholar
[30]Gross, E., Structure of a quantized vortex in boson systems, Nuovo Cimento, 20(3) (1961), 454–477.Google Scholar
[31]Pitaevskii, L., Vortex lines in an imperfect Bose gas, Soviet Phys. JETP, 13(2) (1961), 451–454.Google Scholar
[32]Bao, W., The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics, in: Dynamics in Models of Coarsening, Condensation and Quantization, Vol. 9 of IMS Lecture Notes Series, World Scientific, 2007, 215–255.Google Scholar
[33]Bao, W. and Du, Q., Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25(5) (2004), 1674–1697.Google Scholar
[34]Bao, W. and Tang, W., Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional, J. Comput. Phys., 187(1) (2003), 230–254.Google Scholar
[35]Dehghan, M. and Taleei, A., A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients, Comput. Phys. Commun., 181 (2010), 43–51.Google Scholar
[36]Thelwell, R., Carter, J. and Deconinck, B., Instabilities of one-dimensional stationary solutions of the cubic nonlinear Schrödinger equation, J. Phys. A, 39 (2006), 73–84.Google Scholar
[37]Carr, L., Clark, C. and Reinhardt, W., Stationary solutions of the one-dimensional nonlinear Schrödinger equation, I: case of repulsive nonlinearity, Phys. Rev. A, 62 (2000), 063610.CrossRefGoogle Scholar
[38]Carr, L., Clark, C. and Reinhardt, W., Stationary solutions of the one-dimensional nonlinear Schrödinger equation, II: case of attractive nonlinearity, Phys. Rev. A, 62 (2000), 063611.Google Scholar
[39]Bransden, B. and Joachain, C., Physics of Atoms and Molecules, Prentice Hall (Pearson Education Ltd, Harlow, England), 2003.Google Scholar
[40]Betcke, M. and Voss, H., Analysis and efficient solution of stationary Schrödinger equation governing electronic states of quantum dots and rings in magnetic feld, Report 143, TU Hamburg-Harburg (2010) submitted to Journal of Computational Physics.Google Scholar
[41]Zisowsky, A., Arnold, A., Ehrhardt, M. and Koprucki, T., Discrete transparent boundary conditions for transient kp-Schrödinger equations with application to quantum-heterostructures, J. Appl. Math. Mech., 85(11) (2005), 793–805.Google Scholar
[42]Klindworth, D., Discrete Transparent Boundary Conditions for Multiband Effective Mass Approximations, Master’s thesis, Technische Universität Berlin, 2009.Google Scholar
[43]Odermatt, S., Luisier, M. and Witzigmann, B., Bandstructure calculation using the kp method for arbitrary potentials with open boundary conditions, J. Appl. Phys., 97 (2005), 046104.Google Scholar
[44]Antoine, X., Besse, C. and Mouysset, V., Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions, Math. Comput., 73(248) (2004), 1779–1799.Google Scholar