Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T15:04:54.842Z Has data issue: false hasContentIssue false

Three Counter-Examples on Semi-Graphoids

Published online by Cambridge University Press:  01 March 2008

RAYMOND HEMMECKE
Affiliation:
Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, 39106 Magdeburg, Germany (e-mail: [email protected])
JASON MORTON
Affiliation:
Department of Mathematics, University of California, Berkeley, CA 94720, USA (e-mail: [email protected], [email protected], [email protected])
ANNE SHIU
Affiliation:
Department of Mathematics, University of California, Berkeley, CA 94720, USA (e-mail: [email protected], [email protected], [email protected])
BERND STURMFELS
Affiliation:
Department of Mathematics, University of California, Berkeley, CA 94720, USA (e-mail: [email protected], [email protected], [email protected])
OLIVER WIENAND
Affiliation:
Fachbereich Mathematik, Technische Universität Kaiserslautern, 67653 Kaiserslautern, Germany (e-mail: [email protected])

Abstract

Semi-graphoids are combinatorial structures that arise in statistical learning theory. They are equivalent to convex rank tests and to polyhedral fans that coarsen the reflection arrangement of the symmetric group Sn. In this paper we resolve two problems on semi-graphoids posed in Studený's book (2005), and we answer a related question of Postnikov, Reiner and Williams on generalized permutohedra. We also study the semigroup and the toric ideal associated with semi-graphoids.

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] 4ti2: A software package for algebraic, geometric and combinatorial problems on linear spaces. Available at: http://www.4ti2.de.Google Scholar
[2]Aoki, S., Takemura, A. and Yoshida, R. (2005) Indispensable monomials of toric ideals and Markov bases. In Proc Asian Symposium on Computer Mathematics: ASCM 2005 (S. Pae and H. Park, eds), Korea Institute for Advanced Study, pp. 200–202Google Scholar
[3]Bokowski, J. and Sturmfels, B. (1987) Polytopal and non-polytopal spheres: An algorithmic approach. Israel J. Math. 57 257271.CrossRefGoogle Scholar
[4]Bruns, W. and Koch, R. (2001) Computing the integral closure of an affine semigroup. In Effective Methods in Algebraic and Analytic Geometry: Kraków 2000. Univ. Iagel. Acta Math. 39 5970.Google Scholar
[5]Diaconis, P. and Sturmfels, B. (1998) Algebraic algorithms for sampling from conditional distributions. Ann. Statist. 26 363397.CrossRefGoogle Scholar
[6]Eisenbud, D. (1995) Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, Springer, New York.Google Scholar
[7]Gawrilow, E. and Joswig, M. (2000) Polymake: A framework for analyzing convex polytopes. In Polytopes: Combinatorics and Computation (Kalai, G. and Ziegler, G. M., eds), Birkhäuser, pp. 4374.CrossRefGoogle Scholar
[8]Geiger, D., Meek, C. and Sturmfels, B. (2006) On the toric algebra of graphical models. Ann. Statist. 34 14631492.Google Scholar
[9]Grayson, D. and Stillman, M. Macaulay2: A software system for research in algebraic geometry. Available at: http://www.math.uiuc.edu/Macaulay2/.Google Scholar
[10]Hemmecke, R., Takemura, A. and Yoshida, R. Computing holes in semi-groups. Preprint available at: math.CO/0607599.Google Scholar
[11]Hirai, H. (2006) Sequences of stellar subdivisions. Preprint.Google Scholar
[12]Matúš, F. (1999) Conditional independences among four random variables III: Final conclusion. Combin. Probab. Comput. 8 269276.CrossRefGoogle Scholar
[13]Matúš, F. (2003) Conditional probabilities and permutohedron. Ann. Inst. H. Poincaré Probab. Statist. 39 687701.CrossRefGoogle Scholar
[14]Matúš, F. (2004) Towards classification of semi-graphoids. Discrete Math. 277 115145.Google Scholar
[15]Miller, E. and Sturmfels, B. (2004) Combinatorial Commutative Algebra, Graduate Texts in Mathematics, Springer, New York.Google Scholar
[16]Morton, J., Pachter, L., Shiu, A., Sturmfels, B. and Wienand, O. (2006) Geometry of rank tests. Probabilistic Graphical Models (PGM 3), Prague 2006. Available at: math.ST/0605173.Google Scholar
[17]Postnikov, A. (2005) Permutohedra, associahedra, and beyond. Preprint available at: math.CO/0507163.Google Scholar
[18]Postnikov, A., Reiner, V. and Williams, L. Faces of simple generalized permutohedra. Preprint available at: math.CO/0609184.Google Scholar
[19]Studený, M. (1994) Structural semigraphoids. Internat. J. General Systems 22 207217.CrossRefGoogle Scholar
[20]Studený, M. (2005) Probabilistic Conditional Independence Structures, Springer Series in Information Science and Statistics, Springer, London.Google Scholar
[21]Sturmfels, B. (1996) Gröbner Bases and Convex Polytopes, AMS, Providence.Google Scholar
[22]Ziegler, G. (1998) Lectures on Polytopes. Graduate Texts in Mathematics, Springer, New York.Google Scholar