Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T20:14:37.079Z Has data issue: false hasContentIssue false

Strong Refutation Heuristics for Random k-SAT

Published online by Cambridge University Press:  14 August 2006

AMIN COJA-OGHLAN
Affiliation:
Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6, 10099 Berlin, Germany (e-mail: [email protected])
ANDREAS GOERDT
Affiliation:
Technische Universität Chemnitz, Fakultät für Informatik Straße der Nationen 62, 09107 Chemnitz, Germany (e-mail: [email protected], [email protected])
ANDRÉ LANKA
Affiliation:
Technische Universität Chemnitz, Fakultät für Informatik Straße der Nationen 62, 09107 Chemnitz, Germany (e-mail: [email protected], [email protected])

Abstract

A simple first moment argument shows that in a randomly chosen $k$-SAT formula with $m$ clauses over $n$ boolean variables, the fraction of satisfiable clauses is $1-2^{-k}+o(1)$ as $m/n\rightarrow\infty$ almost surely. In this paper, we deal with the corresponding algorithmic strong refutation problem: given a random $k$-SAT formula, can we find a certificate that the fraction of satisfiable clauses is $1-2^{-k}+o(1)$ in polynomial time? We present heuristics based on spectral techniques that in the case $k=3$ and $m\geq\ln(n)^6n^{3/2}$, and in the case $k=4$ and $m\geq Cn^2$, find such certificates almost surely. In addition, we present heuristics for bounding the independence number (resp. the chromatic number) of random $k$-uniform hypergraphs from above (resp. from below) for $k=3,4$.

Type
Paper
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)