Published online by Cambridge University Press: 30 June 2020
Monotonic surfaces spanning finite regions of ℤd arise in many contexts, including DNA-based self-assembly, card-shuffling and lozenge tilings. One method that has been used to uniformly generate these surfaces is a Markov chain that iteratively adds or removes a single cube below the surface during a step. We consider a biased version of the chain, where we are more likely to add a cube than to remove it, thereby favouring surfaces that are ‘higher’ or have more cubes below it. We prove that the chain is rapidly mixing for any uniform bias in ℤ2 and for bias λ > d in ℤd when d > 2. In ℤ2 we match the optimal mixing time achieved by Benjamini, Berger, Hoffman and Mossel in the context of biased card shuffling [2], but using much simpler arguments. The proofs use a geometric distance function and a variant of path coupling in order to handle distances that can be exponentially large. We also provide the first results in the case of fluctuating bias, where the bias can vary depending on the location of the tile. We show that the chain continues to be rapidly mixing if the biases are close to uniform, but that the chain can converge exponentially slowly in the general setting.
A preliminary version of this paper appeared in Proceedings of the 20th ACM–SIAM Symposium on Discrete Algorithms (2009), pp. 76–85.
Supported in part by NSF grants CCF-1526900, CCF-1637031 and CCF-1733812.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.