Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:38:06.025Z Has data issue: false hasContentIssue false

A Rate for the Erdős-Turán Law*

Published online by Cambridge University Press:  12 September 2008

A. D. Barbour
Affiliation:
Institut für Angewandte Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
Simon Tavaré
Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, CA 90089-1113

Abstract

The Erdős-Turán law gives a normal approximation for the order of a randomly chosen permutation of n objects. In this paper, we provide a sharp error estimate for the approximation, showing that, if the mean of the approximating normal distribution is slightly adjusted, the error is of order log−1/2n.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arratia, R. A. and Tavaré, S. (1992) Limit theorems for combinatorial structures via discrete process approximations. Rand. Struct. Alg. 3 321345.CrossRefGoogle Scholar
[2]Arratia, R. A., Barbour, A. D. and Tavaré, S. (1992) Poisson process approximations for the Ewens Sampling Formula. Ann. Appl. Probab. 2 519535.CrossRefGoogle Scholar
[3]Arratia, R. A., Barbour, A. D. and Tavaré, S. (1993) On random polynomials over finite fields. Math. Proc. Cam. Phil. Soc. 114 347368.CrossRefGoogle Scholar
[4]Arratia, R. A., Barbour, A. D. and Tavaré, S. (1993) Logarithmic combinatorial structures. Ann. Probab. (in preparation).Google Scholar
[5]Best, M. R. (1970) The distribution of some variables on a symmetric group. Nederl. Akad. Wetensch. Indag. Math. Proc. Ser. A 73 385402.CrossRefGoogle Scholar
[6]Bovey, J. D. (1980) An approximate probability distribution for the order of elements of the symmetric group. Bull. London Math. Soc. 12 4146.CrossRefGoogle Scholar
[7]Erdös, P. and Turán, P. (1967) On some problems of a statistical group theory. III. Acta Math. Acad. Sci. Hungar. 18 309320.CrossRefGoogle Scholar
[8]Ewens, W. J. (1972) The sampling theory of selectively neutral alleles. Theor. Popn. Biol. 3 87112.CrossRefGoogle ScholarPubMed
[9]Ewens, W. J. (1990) Population genetics theory – the past and the future. In: Lessard, S. (ed.) Mathematical and statistical developments of evolutionary theory, Kluwer Dordrecht, Holland, 177227.CrossRefGoogle Scholar
[10]Feller, W. (1971) An introduction to probability theory and its applications, Volume II, 2nd Edition, Wiley, New York.Google Scholar
[11]Hardy, G. H. and Wright, E. M. (1979) An introduction to the theory of numbers, 5th Edition, Oxford University Press, Oxford.Google Scholar
[12]Komlós, J., Major, P. and Tusnády, G. (1975) An approximation of partial sums of independent RV'-s, and the sample DF. I. Z. Wahrscheinlichkeitstheorie verw. Geb. 32 111131.CrossRefGoogle Scholar
[13]Landau, E. (1909) Handbuch der Lehre von der Verteilung der Primzahlen. Bd. I.Google Scholar
[14]De Laurentis, J. M. and Pittel, B. (1985) Random permutations and Brownian motion. Pacific J. Math. 119, 287301.CrossRefGoogle Scholar
[15]Nicolas, J.-L. (1984) A Gaussian law on FQ[X]. Colloquia Math. Soc. Jdnos Bolyai 34 11271162.Google Scholar
[16]Nicolas, J.-L. (1985) Distribution statistique de l'ordre d'un element du groupe symétrique. Ada Math. Hungar. 45 6984.CrossRefGoogle Scholar