Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:29:36.532Z Has data issue: false hasContentIssue false

A proof of a conjecture of Gyárfás, Lehel, Sárközy and Schelp on Berge-cycles

Published online by Cambridge University Press:  09 March 2021

G. R. Omidi*
Affiliation:
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran; School of Mathematics, Institute for Research in Fundamental Sciences (IPM); PO box 19395-5746, Tehran, Iran

Abstract

It has been conjectured that, for any fixed \[{\text{r}} \geqslant 2\] and sufficiently large n, there is a monochromatic Hamiltonian Berge-cycle in every \[({\text{r}} - 1)\]-colouring of the edges of \[{\text{K}}_{\text{n}}^{\text{r}}\], the complete r-uniform hypergraph on n vertices. In this paper we prove this conjecture.

Type
Paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was partially carried out in the IPM-Isfahan Branch and in part supported by a grant from IPM (no. 92050217).

References

Bondy, J. A. and Murty, U. S. R. (1976) Graph Theory with Applications, American Elsevier.CrossRefGoogle Scholar
Gyárfás, A., Lehel, J., Sárközy, G. N. and Schelp, R. H. (2008) Monochromatic Hamiltonian Berge-cycles in colored complete uniform hypergraphs. J. Combin. Theory Ser. B 98 342358.10.1016/j.jctb.2007.07.002CrossRefGoogle Scholar
Gyárfás, A., Sárközy, G. N. and Szemerédi, E. (2010) Long monochromatic Berge-cycles in colored 4-uniform hypergraphs. Graphs Combin. 26 7176.CrossRefGoogle Scholar
Gyárfás, A., Sárközy, G. N. and Szemerédi, E. (2010) Monochromatic matchings in the shadow graph of almost complete hypergraphs. Ann. Combin. 14 245249.10.1007/s00026-010-0058-1CrossRefGoogle Scholar
Haxell, P., łuczak, T., Peng, Y., Rödl, V., Ruciński, A., Simonovits, M. and Skokan, J. (2006) The Ramsey number for hypergraph cycles I. J. Combin. Theory Ser. A 113 6783.CrossRefGoogle Scholar
Haxell, P., łuczak, T., Peng, Y., Rödl, V., Ruciński, A. and Skokan, J. (2009) The Ramsey number for 3-uniform tight hypergraph cycles. Combin. Probab. Comput. 18 165203.CrossRefGoogle Scholar
Maherani, L. and Omidi, G. R. (2017) Monochromatic Hamiltonian Berge-cycles in colored hypergraphs. Discrete Math. 340 20432052.CrossRefGoogle Scholar
Omidi, G. R. and Shahsiah, M. (2014) Ramsey numbers of 3-uniform loose paths and loose cycles. J. Combin. Theory Ser. A 121 6473.CrossRefGoogle Scholar
Ramsey, F. P. (1930) On a problem of formal logic. Proc. London Math. Soc. (2) 30 264286.CrossRefGoogle Scholar