Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T20:19:57.219Z Has data issue: false hasContentIssue false

On the Bollobás–Eldridge Conjecture for Bipartite Graphs

Published online by Cambridge University Press:  01 September 2007

B. CSABA*
Affiliation:
Analysis and Stochastics Research Group of the Hungarian Academy of Sciences, Hungary

Abstract

Let G be a simple graph on n vertices. A conjecture of Bollobás and Eldridge [5] asserts that if then G contains any n vertex graph H with Δ(H) = k. We prove a strengthened version of this conjecture for bipartite, bounded degree H, for sufficiently large n. This is the first result on this conjecture for expander graphs of arbitrary (but bounded) degree. An important tool for the proof is a new version of the Blow-Up Lemma.

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aigner, M. and Brandt, S. (1993) Embedding arbitrary graphs of maximum degree two. J. London Math. Soc. 48 3951.CrossRefGoogle Scholar
[2]Alon, N. and Fischer, E. (1996) 2-factors in dense graphs. Discrete Math. 152 1323.CrossRefGoogle Scholar
[3]Azuma, K. (1967) Weighted sums of certain dependent variables. Tohoku Math. J. 3 357367.Google Scholar
[4]Bollobás, B. (1978) Extremal Graph Theory, Academic Press.Google Scholar
[5]Bollobás, B. and Eldridge, S. E. (1978) Packing of graphs and applications to computational complexity. J. Combin. Theory Ser. B 25 105124.CrossRefGoogle Scholar
[6]Corrádi, H. and Hajnal, A. (1963) On the maximal number of independent circuits in a graph. Acta Math. Hung. 14 423439.CrossRefGoogle Scholar
[7]Csaba, B. (2003) The Bollobás–Eldridge conjecture for graphs of maximum degree four. Manuscript.Google Scholar
[8]Csaba, B., Shokoufandeh, A. and Szemerédi, E. (2003) Proof of a conjecture of Bollobás and Eldridge for graphs of maximum degree three. Combinatorica 23 3572.CrossRefGoogle Scholar
[9]Hajnal, A. and Szemerédi, E. (1970) Proof of a conjecture of Erdős. In Combinatorial Theory and its Applications II (P. Erdős and V. T. Sós, eds), Colloquia Mathematica Societatis János Bolyai, North-Holland, Amsterdam/London.Google Scholar
[10]Hajnal, P. (1991) An lower bound on the randomized decision tree complexity of graph properties. Combinatorica 11 131143.CrossRefGoogle Scholar
[11]Hajnal, P. and Szegedy, M. (1992) On packing bipartite graphs. Combinatorica 12 295301.CrossRefGoogle Scholar
[12]Hoeffding, W. (1963) Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 1330.CrossRefGoogle Scholar
[13]Komlós, J., Sárközy, G. N. and Szemerédi, E. (1997) Blow-Up Lemma. Combinatorica 17 109123.CrossRefGoogle Scholar
[14]Komlós, J., Sárközy, G. N. and Szemerédi, E. (1998), An algorithmic version of the Blow-Up Lemma. Random Struct. Alg. 12 297312.3.0.CO;2-Q>CrossRefGoogle Scholar
[15]Komlós, J. and Simonovits, M. (1993), Szemerédi's Regularity Lemma and its applications in graph theory. In Combinatorics: Paul Erdős is Eighty, 2 (Keszthely, 1993), pp. 295352.Google Scholar
[16]Sauer, N. and Spencer, J. (1978), Edge-disjoint placements of graphs. J. Combin. Theory Ser. B 25 295302.CrossRefGoogle Scholar
[17]Szemerédi, E. (1976) Regular partitions of graphs. Colloques Internationaux CNRS No 260: Problèmes Combinatoires et Théorie des Graphes, Orsay, 399–401.Google Scholar