Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T23:08:07.872Z Has data issue: false hasContentIssue false

On Sums of Dilates

Published online by Cambridge University Press:  09 July 2009

JAVIER CILLERUELO
Affiliation:
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049-Madrid, Spain (e-mail: [email protected])
YAHYA O. HAMIDOUNE
Affiliation:
UPMC Université Paris 06, E. Combinatoire, Case 189, 4 Place Jussieu, 75005 Paris, France (e-mail: [email protected])
ORIOL SERRA
Affiliation:
Universitat Politécnica de Catalunya, Jordi Girona, 1, E-08034 Barcelona, Spain (e-mail: [email protected])

Abstract

For k prime and A a finite set of integers with |A| ≥ 3(k − 1)2(k − 1)! we prove that |A + k · A| ≥ (k + 1)|A| − ⌈k(k + 2)/4⌉ where k · A = {ka: aA}. We also describe the sets for which equality holds.

Type
Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bukh, B. (2008) Sums of dilates. Combin. Probab. Comput. 17 627639.Google Scholar
[2]Cilleruelo, J., Silva, M. and Vinuesa, C. A sumset problem. Preprint.Google Scholar
[3]Nathanson, M. B. Inverse problems for linear forms over finite sets of integers. Available from: arXiv:0708.2304.Google Scholar