Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T08:19:51.540Z Has data issue: false hasContentIssue false

On Edge-Disjoint Spanning Trees in a Randomly Weighted Complete Graph

Published online by Cambridge University Press:  09 October 2017

ALAN FRIEZE
Affiliation:
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA (e-mail: [email protected])
TONY JOHANSSON
Affiliation:
Department of Mathematics, Uppsala University, 751 06 Uppsala, Sweden (e-mail: [email protected])

Abstract

Assume that the edges of the complete graph Kn are given independent uniform [0, 1] weights. We consider the expected minimum total weight μk of k ⩽ 2 edge-disjoint spanning trees. When k is large we show that μkk2. Most of the paper is concerned with the case k = 2. We show that m2 tends to an explicitly defined constant and that μ2 ≈ 4.1704288. . . .

Type
Paper
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Aldous, D. (1992) Asymptotics in the random assignment problem. Probab. Theory Rel. Fields 93 507534.CrossRefGoogle Scholar
[2] Aldous, D. (2001) The ζ(2) limit in the random assignment problem. Random Struct. Alg. 4 381418.CrossRefGoogle Scholar
[3] Avram, F. and Bertsimas, D. (1992) The minimum spanning tree constant in geometrical probability and under the independent model: A unified approach. Ann. Appl. Probab. 2 113130.CrossRefGoogle Scholar
[4] Beveridge, A., Frieze, A. M. and McDiarmid, C. J. H. (1998) Minimum length spanning trees in regular graphs. Combinatorica 18 311333.Google Scholar
[5] Bollobás, B. (1980) A probabilistic proof of an asymptotic formula for the number of labelled graphs. Europ. J. Combin. 1 311316.CrossRefGoogle Scholar
[6] Cain, J. A., Sanders, P. and Wormald, N. (2007) The random graph threshold for k-orientability and a fast algorithm for optimal multiple-choice allocation. In SODA 2007: Proc. 18th Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, pp. 469476.Google Scholar
[7] Cooper, C., Frieze, A. M., Ince, N., Janson, S. and Spencer, J. (2016) On the length of a random minimum spanning tree. Combin. Probab. Comput. 25, 89107.CrossRefGoogle Scholar
[8] Durrett, R. (1991) Probability: Theory and Examples, Wadsworth & Brooks/Cole.Google Scholar
[9] Fenner, T. I. and Frieze, A. M. (1982) On the connectivity of random m-orientable graphs and digraphs. Combinatorica 2 347359.Google Scholar
[10] Frieze, A. M. (1985) On the value of a random minimum spanning tree problem. Discrete Appl. Math. 10 4756.Google Scholar
[11] Frieze, A. M. (1986) On large matchings and cycles in sparse random graphs. Discrete Math. 59 243256.CrossRefGoogle Scholar
[12] Frieze, A. M. (2004) On random symmetric travelling salesman problems. Math. Oper. Res. 29 878890.CrossRefGoogle Scholar
[13] Frieze, A. M. and Grimmett, G. R. (1985) The shortest path problem for graphs with random arc-lengths. Discrete Appl. Math. 10 5777.CrossRefGoogle Scholar
[14] Frieze, A. M. and McDiarmid, C. J. H. (1989) On random minimum length spanning trees. Combinatorica 9 363374.Google Scholar
[15] Frieze, A. M., Ruszinko, M. and Thoma, L. (2000) A note on random minimum length spanning trees. Electron. J. Combin. 7 R41.CrossRefGoogle Scholar
[16] Gao, P., Pérez-Giménez, X. and Sato, C. M. (2014) Arboricity and spanning-tree packing in random graphs with an application to load balancing. Extended abstract published in SODA 2014, pp. 317–326.Google Scholar
[17] Janson, S. (1995) The minimal spanning tree in a complete graph and a functional limit theorem for trees in a random graph. Random Struct. Alg. 7 337355.Google Scholar
[18] Janson, S. (1999) One, two and three times log n/n for paths in a complete graph with random weights. Combin. Probab. Comput. 8 347361.CrossRefGoogle Scholar
[19] Janson, S. and Łuczak, M. J. (2007) A simple solution to the k-core problem. Random Struct. Alg. 30 5062.Google Scholar
[20] Karp, R. M. (1979) A patching algorithm for the non-symmetric traveling salesman problem. SIAM J. Comput. 8 561573.CrossRefGoogle Scholar
[21] Kordecki, W. and Lyczkowska-Hanćkowiak, A. (2013) Exact expectation and variance of minimal basis of random matroids. Discussiones Mathematicae Graph Theory 33 277288.Google Scholar
[22] Linusson, S. and Wästlund, J. (2004) A proof of Parisi's conjecture on the random assignment problem. Probab. Theory Rel. Fields 128 419440.CrossRefGoogle Scholar
[23] Łuczak, T. (1991) Size and connectivity of the k-core of a random graph. Discrete Math. 91 6168.CrossRefGoogle Scholar
[24] Nair, C., Prabhakar, B. and Sharma, M. (2005) Proofs of the Parisi and Coppersmith–Sorkin random assignment conjectures. Random Struct. Alg. 27 413444.CrossRefGoogle Scholar
[25] Nash-Williams, C. St. J. A. (1961) Edge-disjoint spanning trees of finite graphs. J. London Math. Soc. 36 445450.Google Scholar
[26] Nash-Williams, C. St. J. A. (1964) Decomposition of finite graphs into forests. J. London Math. Soc. 39 12.Google Scholar
[27] Oxley, J. (1992) Matroid Theory, Oxford University Press.Google Scholar
[28] Penrose, M. (1998) Random minimum spanning tree and percolation on the n-cube. Random Struct. Alg. 12 6382.3.0.CO;2-R>CrossRefGoogle Scholar
[29] Pittel, B., Spencer, J. and Wormald, N. (1996) Sudden emergence of a giant k-core in a random graph. J. Combin. Theory Ser. B 67 111151.CrossRefGoogle Scholar
[30] Steele, J. M. (1987) On Frieze's ζ(3) limit for lengths of minimal spanning trees. Discrete Appl. Math. 18 99103.Google Scholar
[31] Wästlund, J. (2009) An easy proof of the ζ(2) limit in the random assignment problem. Electron. Comm. Probab. 14 261269.Google Scholar
[32] Wästlund, J. (2010) The mean field traveling salesman and related problems. Acta Math. 204 91150.CrossRefGoogle Scholar
[33] Welsh, D. J. A. (1976) Matroid Theory, Academic Press.Google Scholar