Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T03:26:56.961Z Has data issue: false hasContentIssue false

On a Combinatorial Theorem of Erdös, Ginzburg and Ziv

Published online by Cambridge University Press:  01 December 1998

YAHYA OULD HAMIDOUNE
Affiliation:
E. R. Combinatoire, UFR 921, Case 189, Université Pierre et Marie Curie, 4 Place Jussieu, 75230 Paris, France (e-mail: [email protected])
OSCAR ORDAZ
Affiliation:
Departamento de Matemáticas, Facultad de Ciencias Universidad Central de Venezuela, Ap. 47567, Caracas 1041-A, Venezuela (e-mail: [email protected])
ASDRUBAL ORTUÑO
Affiliation:
Centro de Ingeniería de Software Y Sistema (ISYS), Facultad de Ciencias Universidad Central de Venezuela, Ap. 47567, Caracas 1041-A, Venezuela (e-mail: [email protected])

Abstract

Let G be an abelian group of order n and let μ be a sequence of elements of G with length 2nk+1 taking k distinct values. Assuming that no value occurs nk+3 times, we prove that the sums of the n-subsequences of μ must include a non-null subgroup. As a corollary we show that if G is cyclic then μ has an n-subsequence summing to 0. This last result, conjectured by Bialostocki, reduces to the Erdos–Ginzburg–Ziv theorem for k=2.

Type
Research Article
Copyright
1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)