Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T19:26:04.967Z Has data issue: false hasContentIssue false

Minors in Graphs with High Chromatic Number

Published online by Cambridge University Press:  13 April 2011

THOMAS BÖHME
Affiliation:
Institut für Mathematik, Technische Universität Ilmenau, Ilmenau, Germany (e-mail: [email protected])
ALEXANDR KOSTOCHKA
Affiliation:
Department of Mathematics, University of Illinois, Urbana, IL 61801, USA and Sobolev Institute of Mathematics, Novosibirsk, Russia (e-mail: [email protected])
ANDREW THOMASON
Affiliation:
DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, UK (e-mail: [email protected])

Abstract

We develop lower bounds on the Hadwiger number h(G) of graphs G with high chromatic number. In particular, if G has n vertices and chromatic number k then h(G) ≥ (4kn)/3.

Type
Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Dirac, G. A. (1964) Homomorphism theorems for graphs. Math. Ann. 153 6980.CrossRefGoogle Scholar
[2]Duchet, P. and Meyniel, H. (1982) On Hadwiger's number and the stability number. In Graph Theory (Bollobás, B., ed.), Vol. 13 of Annals of Discrete Mathematics, North-Holland, pp. 7173.Google Scholar
[3]Gallai, T. (1963) Kritische Graphen II. Publ. Math. Inst. Hungar. Acad. Sci. 8 373395.Google Scholar
[4]Kawarabayashi, K. and Song, Z. (2007) Independence numbers and clique minors. J. Graph Theory 56 219226.CrossRefGoogle Scholar
[5]Plummer, M. D., Stiebitz, M. and Toft, B. (2003) On a special case of Hadwiger's conjecture. Discussiones Mathematicae Graph Theory 23 333363.CrossRefGoogle Scholar
[6]Robertson, N., Seymour, P. D. and Thomas, R. (1993) Hadwiger's conjecture for K 6-free graphs. Combinatorica 13 279362.CrossRefGoogle Scholar
[7]Stehlík, M. (2009) Critical graphs with connected complements. J. Combin. Theory Ser. B 89 189194.CrossRefGoogle Scholar
[8]Wagner, K. (1937) Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114 570590.CrossRefGoogle Scholar