No CrossRef data available.
Published online by Cambridge University Press: 27 October 2020
It is known that for Kn,n equipped with i.i.d. exp (1) edge costs, the minimum total cost of a perfect matching converges to
$\zeta(2)=\pi^2/6$
in probability. Similar convergence has been established for all edge cost distributions of pseudo-dimension
$q \geq 1$
. In this paper we extend those results to all real positive q, confirming the Mézard–Parisi conjecture in the last remaining applicable case.