Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T23:36:14.611Z Has data issue: false hasContentIssue false

The Maximum Degree of Series-Parallel Graphs

Published online by Cambridge University Press:  31 May 2011

MICHAEL DRMOTA
Affiliation:
Institute of Discrete Mathematics and Geometry, Technische Universität Wien, Wiedner Hauptstrasse 8–10, A–1040 Wien, Austria (e-mail: [email protected])
OMER GIMÉNEZ
Affiliation:
Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Jordi Girona 1–3, 08034 Barcelona, Spain (e-mail: [email protected])
MARC NOY
Affiliation:
Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Jordi Girona 1–3, 08034 Barcelona, Spain (e-mail: [email protected])

Abstract

We prove that the maximum degree Δn of a random series-parallel graph with n vertices satisfies Δn/lognc in probability, and Δn ~ c logn for a computable constant c > 0. The same kind of result holds for 2-connected series-parallel graphs, for outerplanar graphs, and for 2-connected outerplanar graphs.

Type
Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bernasconi, N., Panagiotou, K. and Steger, A. (2009) The degree sequence of random graphs from subcritical classes. Combin. Probab. Comput. 18 647681.CrossRefGoogle Scholar
[2]Bodirsky, M., Giménez, O., Kang, M. and Noy, M. (2007) Enumeration and limit laws for series-parallel graphs. Europ. J. Combin. 8 20912105.CrossRefGoogle Scholar
[3]Drmota, M. (1994) A bivariate asymptotic expansion of coefficients of powers of generating functions. Europ. J. Combin. 15 139152CrossRefGoogle Scholar
[4]Drmota, M. (2009) Random Trees, Springer.CrossRefGoogle Scholar
[5]Drmota, M., Giménez, O. and Noy, M. (2010) Vertices of given degree in series-parallel graphs. Random Struct. Alg. 36 273314.CrossRefGoogle Scholar
[6]Drmota, M., Giménez, O. and Noy, M. (2011) Degree distribution in random planar graphs. J. Combin. Theory Ser. A 118 21022130.CrossRefGoogle Scholar
[7]Drmota, M., Giménez, O. and Noy, M. The maximum degree of planar graphs. Manuscript in preparation.Google Scholar
[8]Flajolet, P. and Odlyzko, A. (1990) Singularity analysis of generating functions. SIAM J. Discrete Math. 3 216240.CrossRefGoogle Scholar
[9]Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press.CrossRefGoogle Scholar
[10]Gao, Z. and Wormald, N. C. (2000) The distribution of the maximum vertex degree in random planar maps. J. Combin. Theory Ser. A 89 201230.CrossRefGoogle Scholar
[11]Hayman, W. K. (1956) A generalisation of Stirling's formula. J. Reine Angew. Math. 196 6795.CrossRefGoogle Scholar
[12]McDiarmid, C. and Reed, B. (2008) On the maximum degree of a random planar graph. Combin. Probab. Comput. 17 591601.CrossRefGoogle Scholar