Article contents
Local Conditions for Exponentially Many Subdivisions
Published online by Cambridge University Press: 28 November 2016
Abstract
Given a graph F, let st(F) be the number of subdivisions of F, each with a different vertex set, which one can guarantee in a graph G in which every edge lies in at least t copies of F. In 1990, Tuza asked for which graphs F and large t, one has that st(F) is exponential in a power of t. We show that, somewhat surprisingly, the only such F are complete graphs, and for every F which is not complete, st(F) is polynomial in t. Further, for a natural strengthening of the local condition above, we also characterize those F for which st(F) is exponential in a power of t.
MSC classification
- Type
- Paper
- Information
- Copyright
- Copyright © Cambridge University Press 2016
References
- 2
- Cited by