Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T18:23:03.219Z Has data issue: false hasContentIssue false

The Largest Component in Subcritical Inhomogeneous Random Graphs

Published online by Cambridge University Press:  09 June 2010

TATYANA S. TUROVA*
Affiliation:
Mathematical Center, University of Lund, Box 118, Lund S-221 00, Sweden (e-mail: [email protected])

Abstract

We study the ‘rank 1 case’ of the inhomogeneous random graph model. In the subcritical case we derive an exact formula for the asymptotic size of the largest connected component scaled to log n. This result complements the corresponding known result in the supercritical case. We provide some examples of applications of the derived formula.

Type
Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bollobás, B., Janson, S. and Riordan, O. (2007) The phase transition in inhomogeneous random graphs. Random Struct. Alg. 31 3122.CrossRefGoogle Scholar
[2]Britton, T., Deijfen, M. and Martin-Löf, A. (2006) Generating simple random graphs with prescribed degree distribution. J. Statist. Phys. 124 13771397.CrossRefGoogle Scholar
[3]de Bruijn, N. G. and Erdős, P. (1951) Some linear and some quadratic recursion formulas I. Nederl. Akad. Wetensch. Proc. Ser. A. 54 (Indagationes Math. 13) 374382. See also http://www.renyi.hu/~p_erdos/1952-10.pdfCrossRefGoogle Scholar
[4]Erdős, P. and Rényi, A. (1960) On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5 1761.Google Scholar
[5]Chung, F. and Lu, L. (2006) The volume of the giant component of a random graph with given expected degree. SIAM J. Discrete Math. 20 395411.CrossRefGoogle Scholar
[6]Grimmett, G. (1999) Percolation, Springer, Berlin.CrossRefGoogle Scholar
[7]Karp, R. M. (1990) The transitive closure of a random digraph. Random Struct. Alg. 1 7393.CrossRefGoogle Scholar
[8]Otter, R. (1949) The multiplicative process. Ann. Math. Statist. 20 206224.CrossRefGoogle Scholar
[9]Turova, T. S. (2003) Long paths and cycles in the dynamical graphs. J. Statist. Phys. 110 385417.CrossRefGoogle Scholar
[10]Turova, T. S. and Vallier, T.Merging percolation on Zd and classical random graphs: Phase transition. Random Struct. Alg. 36 185217.CrossRefGoogle Scholar