Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T08:21:20.934Z Has data issue: false hasContentIssue false

A Group-Theoretic Setting for Some Intersecting Sperner Families

Published online by Cambridge University Press:  12 September 2008

Péter L. Erdős
Affiliation:
Department of Applied Mathematics, University of Twente, 7500 AE Enschede, The Netherlands
Ulrich Faigle
Affiliation:
Department of Applied Mathematics, University of Twente, 7500 AE Enschede, The Netherlands
Walter Kern
Affiliation:
Department of Applied Mathematics, University of Twente, 7500 AE Enschede, The Netherlands

Abstract

Using a group-theoretic approach, we derive some Erdős-Ko-Rado-type results for certain Sperner families of chains and antichains in partial orders. In particular, we establish Bollobás-type inequalities for arbitrary Sperner families of intersecting affine subspaces, and special intersecting Sperner families in generalized Boolean algebras.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aigner, M. (1979) Combinatorial Theory, Springer-Verlag, New York.CrossRefGoogle Scholar
[2]Bollobás, B. (1973) Sperner systems consisting of pairs of complementary subsets. J. Comb. Th. (A) 15 363366.CrossRefGoogle Scholar
[3]Deza, M. and Frankl, P. (1983) Erdős-Ko-Rado theorem – 22 years later. SIAM J. Alg. Disc. Meth. 4 419–31.CrossRefGoogle Scholar
[4]Engel, K. (1984) An Erdős-Ko-Rado theorem for the subcubes of a cube. Combinatorica 4 133140.CrossRefGoogle Scholar
[5]Erdős, P., Ko, C. and Rado, R. (1961) Intersection theorems for systems of finite sets. Quart. J. Math. Oxford, Ser. 2 12 313318.CrossRefGoogle Scholar
[6]Greene, C. and Kleitman, D. J. (1978) Proof techniques in the theory of finite sets. In: Rota, G.-C. (ed.) Studies in Combinatorics, MAA Studies in Mathematics 7, Math. Assoc. America, 2279.Google Scholar
[7]Griggs, J. R., Sturtevant, D. and Saks, M. (1980) On chains and Sperner k-families in ranked posets, II. J. Comb. Th. (A) 29 391394.CrossRefGoogle Scholar
[8]Gronau, H. D. O. F. (1983) More on the Erdős-Ko-Rado Theorem for integer sequences. J. Comb. Th (A) 35 279288.CrossRefGoogle Scholar
[9]Hsieh, W. N. (1975) Intersection theorems for vector spaces. Discrete Math. 12 116.CrossRefGoogle Scholar
[10]Katona, G. O. H. (1968) A theorem on finite sets. In: Theory of Graphs, Proc. Colloq. Tihany, Budapest, 187207.Google Scholar
[11]Katona, G. O. H. (1972) A simple proof of the Erdős-Ko-Rado theorem. J. Comb. Th. (B) 13 183184.CrossRefGoogle Scholar
[12]Kruskal, J. B. (1963) The number of simplices in a complex. In: Mathematical Optimization Techniques, Univ. California Press, Berkeley, 251278.CrossRefGoogle Scholar
[13]Mason, J. H. (1973) Maximal families of pairwise disjoint maximal proper chains in a geometric lattice. J. London Math. Soc. 6 539542.CrossRefGoogle Scholar
[14]Sperner, E. (1928) Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27 544548.CrossRefGoogle Scholar