No CrossRef data available.
Article contents
First Occurrence in Pairs of Long Words: A Penney-ante Conjecture of Pevzner
Published online by Cambridge University Press: 12 September 2008
Abstract
Suppose X1, X2,… is a sequence of independent and identically distributed random elements whose values are taken in a finite set S of size |S| ≥ 2 with probability distribution ℙ(X = s) = p(s) > 0 for s ∈ S. Pevzner has conjectured that for every probability distribution ℙ there exists an N > 0 such that for every word A with letters in S whose length is at least N, there exists a second word B of the same length as A, such that the event that B appears before A in the sequence X1, X2,… has greater probability than that of A appearing before B. In this paper it is shown that a distribution ℙ satisfies Pevzner's conclusion if and only if the maximum value of ℙ, p, and the secondary maximum c satisfy the inequality . For |S| = 2 or |S| = 3, the inequality is true and the conjecture holds. If , then the conjecture is true when A is not allowed to consist of pure repetitions of that unique element for which the distribution takes on its mode.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1995