Article contents
Fast Unimodular Counting
Published online by Cambridge University Press: 01 May 2000
Abstract
This paper describes methods for counting the number of nonnegative integer solutions of the system Ax = b when A is a nonnegative totally unimodular matrix and b an integral vector of fixed dimension. The complexity (under a unit cost arithmetic model) is strong in the sense that it depends only on the dimensions of A and not on the size of the entries of b. For the special case of ‘contingency tables’ the run-time is 2O(√dlogd) (where d is the dimension of the polytope). The method is complementary to Barvinok's in that our algorithm is effective on problems of high dimension with a fixed number of (non-sign) constraints, whereas Barvinok's algorithms are effective on problems of low dimension and an arbitrary number of constraints.
- Type
- Research Article
- Information
- Copyright
- 2000 Cambridge University Press
- 5
- Cited by