Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T17:59:54.192Z Has data issue: false hasContentIssue false

Extensions of the Polynomial Hales–Jewett Theorem

Published online by Cambridge University Press:  01 September 2007

MARK WALTERS*
Affiliation:
Peterhouse, Cambridge, CB2 1RD, UK (e-mail: [email protected])

Abstract

In this paper we prove polynomial versions of the Carlson–Simpson theorem and the Graham–Rothschild theorem on parameter sets. To do so we prove a useful extension of the polynomial Hales–Jewett theorem.

Type
Paper
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bergelson, V. and Leibman, A. (1996) Polynomial extensions of Van der Waerden and Szemerédi theorems. J. Amer. Math. Soc. 9 725753.Google Scholar
[2]Bergelson, V. and Leibman, A. (1999) Set polynomials and polynomial extension of the Hales–Jewett theorem. Ann. of Math. 150 3375.Google Scholar
[3]Carlson, T. J. and Simpson, S. G. (1984) A dual form of Ramsey's theorem. Adv. Math. 53 265290.Google Scholar
[4]Comfort, W. (1977) Ultrafilters: Some old and some new results. Bull. Amer. Math. Soc. 83 417455.Google Scholar
[5]Graham, R. L. and Rothschild, B. (1971) Ramsey's theorem for n parameter sets. Trans. Amer. Math. Soc. 159 257292.Google Scholar
[6]Hales, A. W. and Jewett, R. I. (1963) Regularity and positional games. Trans. Amer. Math. Soc. 106 222229.Google Scholar
[7]McCutcheon, R. (2000) Elemental Methods in Ergodic Ramsey Theory, Vol. 1722 of Lecture Notes in Computer Science, Springer.Google Scholar
[8]McCutcheon, R. (2000) Two new extensions of the Hales–Jewett theorem. Electron. J. Combin. 7 R49.Google Scholar
[9]McCutcheon, R. (2001) An infinitary polynomial Hales–Jewett theorem. Israel J. Math. 121 157172.CrossRefGoogle Scholar
[10]Shelah, S. (2002) A partition theorem. Sci. Math. Jpn. 56 413438.Google Scholar
[11]Walters, M. (2000) Combinatorial proofs of the polynomial Van der Waerden theorem and polynomial Hales–Jewett theorem. J. London Math. Soc. 61 112.Google Scholar
[12]Walters, M. (2000) Ramsey theory, discrepancy theory and related areas. PhD thesis.Google Scholar