Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T21:25:04.307Z Has data issue: false hasContentIssue false

Distance Preserving Ramsey Graphs

Published online by Cambridge University Press:  23 April 2012

DOMINGOS DELLAMONICA Jr
Affiliation:
Department of Mathematics and Computer Science, Emory University, 400 Dowman Dr., W401, Atlanta, GA 30322, USA (e-mail: [email protected], [email protected])
VOJTĚCH RÖDL
Affiliation:
Department of Mathematics and Computer Science, Emory University, 400 Dowman Dr., W401, Atlanta, GA 30322, USA (e-mail: [email protected], [email protected])

Abstract

We prove the following metric Ramsey theorem. For any connected graph G endowed with a linear order on its vertex set, there exists a graph R such that in every colouring of the t-sets of vertices of R it is possible to find a copy G* of G inside R satisfying:

  • distG*(x, y) = distR(x, y) for every x, yV(G*);

  • the colour of each t-set in G* depends only on the graph-distance metric induced in G by the ordered t-set.

Keywords

Type
Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abramson, F. G. and Harrington, L. A. (1978) Models without indiscernibles. J. Symbolic Logic 43 572600.CrossRefGoogle Scholar
[2]Deuber, W. (1975) Generalizations of Ramsey's theorem. In Infinite and Finite Sets I: Colloq., Keszthely, 1973, dedicated to P. Erdős on his 60th birthday, Vol. 10 of Colloq. Math. Soc. János Bolyai, North-Holland, pp. 323332.Google Scholar
[3]Deuber, W. (1975) Partitionstheoreme für Graphen. Comment. Math. Helv. 50 311320.CrossRefGoogle Scholar
[4]Erdős, P., Hajnal, A. and Pósa, L. (1975) Strong embeddings of graphs into colored graphs. In Infinite and Finite Sets I: Colloq., Keszthely, 1973, dedicated to P. Erdős on his 60th birthday, Vol. 10 of Colloq. Math. Soc. János Bolyai, North-Holland, pp. 585595.Google Scholar
[5]Graham, R. L., Grötschel, M. and Lovász, L., editors (1995) Handbook of Combinatorics, Vols 1, 2, Elsevier Science.Google Scholar
[6]Graham, R. L., Leeb, K. and Rothschild, B. L. (1972) Ramsey's theorem for a class of categories. Proc. Nat. Acad. Sci. USA 69 119120.CrossRefGoogle ScholarPubMed
[7]Graham, R. L., Rothschild, B. L. and Spencer, J. H. (1990) Ramsey Theory, second edition, Wiley-Interscience Series in Discrete Mathematics and Optimization.Google Scholar
[8]Graham, R. L. and Winkler, P. M. (1984) Isometric embeddings of graphs. Proc. Nat. Acad. Sci. USA 81 72597260.CrossRefGoogle ScholarPubMed
[9]Hales, A. W. and Jewett, R. I. (1963) Regularity and positional games. Trans. Amer. Math. Soc. 106 222229.CrossRefGoogle Scholar
[10]Nešetřil, J. (2005) Ramsey classes and homogeneous structures. Combin. Probab. Comput. 14 171189.CrossRefGoogle Scholar
[11]Nešetřil, J. (2007) Metric spaces are Ramsey. European J. Combin. 28 457468.CrossRefGoogle Scholar
[12]Nešetřil, J. and Rödl, V. (1975) Partitions of subgraphs. In Recent Advances in Graph Theory: Proc. Second Czechoslovak Sympos., Prague, 1974, Academia, pp. 413423.Google Scholar
[13]Nešetřil, J. and Rödl, V. (1977) Partitions of finite relational and set systems. J. Combin. Theory Ser. A 22 289312.CrossRefGoogle Scholar
[14]Nešetřil, J. and Rödl, V. (1978) On a probabilistic graph-theoretical method. Proc. Amer. Math. Soc. 72 417421.CrossRefGoogle Scholar
[15]Nešetřil, J. and Rödl, V. (1979) Partition theory and its application. In Surveys in Combinatorics: Proc. Seventh British Combinatorial Conf., Cambridge, 1979, Vol. 38 of London Math. Soc. Lecture Note Ser., Cambridge University Press, pp. 96156.CrossRefGoogle Scholar
[16]Nešetřil, J. and Rödl, V. (1979) A short proof of the existence of highly chromatic hypergraphs without short cycles. J. Combin. Theory Ser. B 27 225227.CrossRefGoogle Scholar
[17]Nešetřil, J. and Rödl, V. (1984) Combinatorial partitions of finite posets and lattices: Ramsey lattices. Algebra Universalis 19 106119.CrossRefGoogle Scholar
[18]Nešetřil, J. and Rödl, V. (1987) Strong Ramsey theorems for Steiner systems. Trans. Amer. Math. Soc. 303 183192.CrossRefGoogle Scholar
[19]Nešetřil, J. and Rödl, V. (1989) The partite construction and Ramsey set systems. Discrete Math. 75 327334.CrossRefGoogle Scholar
[20]Nešetřil, J. and Rödl, V. (1990) Introduction: Ramsey theory old and new. In Mathematics of Ramsey Theory, Vol. 5 of Algorithms Combin., Springer, pp. 19.CrossRefGoogle Scholar
[21]Nešetřil, J. and Rödl, V. (1992) On Ramsey graphs without bipartite subgraphs. Discrete Math. 101 223229.CrossRefGoogle Scholar
[22]Rödl, V. (1973) A generalization of Ramsey theorem and dimension of graphs. Master's thesis, Charles University, Prague.Google Scholar
[23]Rödl, V. (1976) A generalization of the Ramsey theorem. In Graphs, Hypergraphs and Block Systems: Zielona Góra 1976, pp. 211–219.Google Scholar
[24]Winkler, P. M. (1984) Isometric embedding in products of complete graphs. Discrete Appl. Math. 7 221225.CrossRefGoogle Scholar