Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T23:15:49.847Z Has data issue: false hasContentIssue false

Degree sequences of sufficiently dense random uniform hypergraphs

Published online by Cambridge University Press:  15 August 2022

Catherine Greenhill
Affiliation:
School of Mathematics and Statistics, UNSW Sydney, NSW 2052, Australia
Mikhail Isaev
Affiliation:
School of Mathematics, Monash University, VIC 3800, Australia
Tamás Makai
Affiliation:
School of Mathematics and Statistics, UNSW Sydney, NSW 2052, Australia
Brendan D. McKay*
Affiliation:
School of Computing, Australian National University, Canberra, ACT 2601, Australia
*
*Corresponding author. Email: [email protected]

Abstract

We find an asymptotic enumeration formula for the number of simple $r$ -uniform hypergraphs with a given degree sequence, when the number of edges is sufficiently large. The formula is given in terms of the solution of a system of equations. We give sufficient conditions on the degree sequence which guarantee existence of a solution to this system. Furthermore, we solve the system and give an explicit asymptotic formula when the degree sequence is close to regular. This allows us to establish several properties of the degree sequence of a random $r$ -uniform hypergraph with a given number of edges. More specifically, we compare the degree sequence of a random $r$ -uniform hypergraph with a given number edges to certain models involving sequences of binomial or hypergeometric random variables conditioned on their sum.

Type
Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research supported by the Australian Research Council, Discovery Project DP190100977.

References

Bishop, Y. M., Fienberg, S. E. and Holland, P. W. (2007) Discrete Multivariate Analysis: Theory and Applications. Springer, Berlin.Google Scholar
Blinovsky, V. and Greenhill, C. (2016) Asymptotic enumeration of sparse uniform hypergraphs with given degrees. Eur. J. Combin. 51 287296.CrossRefGoogle Scholar
Blinovsky, V. and Greenhill, C. (2016) Asymptotic enumeration of sparse uniform linear hypergraphs with given degrees. Electron. J. Combin. 23(3, #P3.17.CrossRefGoogle Scholar
Canfield, E. R., Greenhill, C. and McKay, B. D. (2008) Asymptotic enumeration of dense 0-1 matrices with specified line sums. J. Combin. Theory Ser. A 115 3266.CrossRefGoogle Scholar
Canfield, E. R., Gao, Z., Greenhill, C., McKay, B. D. and Robinson, R. W. (2010) Asymptotic enumeration of correlation-immune boolean functions. Crypt. Commun. 2 111126.CrossRefGoogle Scholar
Chatterjee, S., Diaconis, P. and Sly, A. (2011) Random graphs with a given degree sequence. Ann. Appl. Probab. 21 14001435.CrossRefGoogle Scholar
Dudek, A., Frieze, A., Ruciński, A. and Šileikis, M. (2013) Approximate counting of regular hypergraphs. Inf. Process. Lett. 113 1921.CrossRefGoogle Scholar
Fountoulakis, N., Kang, M. and Makai, T. (2020) Resolution of a conjecture on majority dynamics: Rapid stabilization in dense random graphs. Random Struct. Algorithms 57 11341156.CrossRefGoogle Scholar
Gao, P., Isaev, M. and McKay, B. D. Sandwiching dense random regular graphs between binomial random graphs. Probab. Theory Related Fields. in press.Google Scholar
Golubski, A. J., Westlund, E. E., Vandermeer, J. and Pascual, M. (2016) Ecological networks over the edge: hypergraph trait-mediated indirect interaction (TMII) structure. Trends Ecol. Evol. 31 344354.CrossRefGoogle ScholarPubMed
Higham, N. J. (2008) Functions of Matrices. Society for Industrial and Applied Mathematics.Google Scholar
Horn, R. A. and Johnson, C. R. (2013) Matrix Analysis. Cambridge University Press, Cambridge, 2nd,Google Scholar
Isaev, M. and McKay, B. D. (2018) Complex martingales and asymptotic enumeration. Random Struct. Algorithms 52 617661.CrossRefGoogle Scholar
Janson, S., Łuczak, T. and Rucinski, A. (2000) Random Graphs. John Wiley & Sons, New York.CrossRefGoogle Scholar
Kamčev, N., Liebenau, A. and Wormald, N. (2022) Advances in Combinatorics, 1, 33,Google Scholar
Kendall, M. G. and Stuart, A. (1958) The Advanced Theory of Statistics. Charles Griffin & Company, London, 1 Google Scholar
Kuperberg, G., Lovett, S. and Peled, R. (2017) Probabilistic existence of regular combinatorial structures. Geom. Funct. Anal 27(4) 919972.CrossRefGoogle Scholar
Liebenau, A. and Wormald, N. (2017) Asymptotic enumeration of graphs by degree sequence, and the degree sequence of a random graph, Preprint, 2017. arXiv:1702.08373.Google Scholar
Liebenau, A. and Wormald, N. Asymptotic enumeration of digraphs and bipartite graphs by degree sequence. Random Struct. Algorithms. in press.Google Scholar
McKay, B. D. and McLeod, J. C. (2012) Asymptotic enumeration of symmetric integer matrices with uniform row sums. J. Aust. Math. Soc. 92(3) 367384.CrossRefGoogle Scholar
McKay, B. D. and Wormald, N. C. (1990) Asymptotic enumeration by degree sequence of graphs of high degree. Eur. J. Combin. 11(6) 565580.CrossRefGoogle Scholar
Meyer, C. D. (2000) Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia.CrossRefGoogle Scholar
Michalowicz, J. V., Nichols, J. M., Bucholtz, F. and Olson, C. C. (2009) An Isserlis’ theorem for mixed Gaussian variables: application to the auto-bispectral density. J. Stat. Phys. 136 89102.CrossRefGoogle Scholar
Morimae, T., Takeuchi, Y. and Hayashi, M. (2017) Verification of hypergraph states. Phys. Rev. A 96, #062321.CrossRefGoogle Scholar
Pemantle, R. and Peres, Y. (2014) Concentration of Lipschitz functionals of determinantal and other strong Rayleigh measures. Combin. Prob. Comput. 23 140160.CrossRefGoogle Scholar
Purkait, P., Chin, T.-J., Sadri, A. and Suter, D. (2017) Clustering with hypergraphs: the case for large hyperedges. IEEE Trans. Pattern Anal. Mach. Learn. 39 16971711.CrossRefGoogle ScholarPubMed
Stasi, D., Sadeghi, K., Rinaldo, A., Petrović, S. and Fienberg, S. E. (2014) β-models for random hypergraphs with a given degree sequence, Proceedings of the 21st International Conference on Computational Statistics (COMPSTAT 2014) (M. Gilli, G. Gonzalez-Rodriguez and A. Nieto-Reyes, eds.). New York: Curran Associates, 593600.Google Scholar
Vatutin, V. A. and Mikhailov, V. G. (1982) Limit theorems for the number of empty cells in an equiprobable scheme for group allocation of particles. Theory Probab. Appl. 27 734743.CrossRefGoogle Scholar
Wormald, N. C. (2018) Asymptotic enumeration of graphs with given degree sequence, Proceedings of the International Congress of Mathematicians, ICM 2018, 4, Sirakov, B., de Souza, P.M. and Viana, M., World Scientific, 32633282.Google Scholar
Zhan, X. (2002) Matrix Inequalities , Lecture Notes in Mathematics, 1790. Berlin: Springer.Google Scholar