Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T22:32:55.652Z Has data issue: false hasContentIssue false

Counting higher order tangencies for plane curves

Published online by Cambridge University Press:  26 November 2019

Joshua Zahl*
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada, Email: [email protected]

Abstract

We prove that n plane algebraic curves determine O(n(k+2)/(k+1)) points of kth order tangency. This generalizes an earlier result of Ellenberg, Solymosi and Zahl on the number of (first order) tangencies determined by n plane algebraic curves.

Type
Paper
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported by a NSERC Discovery Grant.

References

Besicovitch, A. and Rado, R. (1968) A plane set of measure zero containing circumferences of every radius. J. London Math. Soc. 43 717719.CrossRefGoogle Scholar
Clarkson, K. L., Edelsbrunner, H., Guibas, L. J., Sharir, M. and Welzl, E. (1990) Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Comput. Geom. 5 99160.CrossRefGoogle Scholar
Dvir, Z. (2009) On the size of Kakeya sets in finite fields. J. Amer. Math. Soc. 22 10931097.CrossRefGoogle Scholar
Ellenberg, J., Solymosi, J. and Zahl, J. (2016) New bounds on curve tangencies and orthogonalities. Discrete Anal. 18 122.CrossRefGoogle Scholar
Guth, L. and Katz, N. (2010) Algebraic methods in discrete analogs of the Kakeya problem. Adv. Math. 225 28282839.CrossRefGoogle Scholar
Kaplan, H., Sharir, M. and Shustin, E. (2010) On lines and joints. Discrete Comput. Geom. 44 838843.CrossRefGoogle Scholar
Kinney, J. R. (1968) A thin set of circles. Amer. Math. Monthly 75 10771081.CrossRefGoogle Scholar
Sharir, M. and Zahl, J. (2017) Cutting algebraic curves into pseudo-segments and applications. J. Combin. Theory Ser. A 150 135.CrossRefGoogle Scholar
Wolff, T. (1997) A Kakeya-type problem for circles. Amer. J. Math. 119 9851026.CrossRefGoogle Scholar
Wolff, T. (1999) Recent work connected to the Kakeya problem. In Prospects in Mathematics, American Mathematical Society, pp. 129–162.Google Scholar
Zahl, J. (2012) On the Wolff circular maximal function. Illinois J. Math. 56 12811295.CrossRefGoogle Scholar
Zahl, J. (2015) A Szemerédi–Trotter type theorem in ℝ4. Discrete Comput. Geom. 54 513572.CrossRefGoogle Scholar