Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-04T17:54:47.194Z Has data issue: false hasContentIssue false

Answer to a Question by Burr and Erdős on Restricted Addition, and Related Results

Published online by Cambridge University Press:  01 September 2007

NORBERT HEGYVÁRI
Affiliation:
Department of Mathematics, Eötvös University, Budapest, Pázmány P st 1/C, PO Box 120, H-1518 Budapest, Hungary (e-mail: [email protected])
FRANÇOIS HENNECART
Affiliation:
LaMUSE, Université de Saint-Étienne, 42023 Saint-Étienne Cedex 2, France (e-mail: [email protected])
ALAIN PLAGNE
Affiliation:
Centre de Mathématiques Laurent Schwartz, UMR 7640 du CNRS, École polytechnique, 91128 Palaiseau Cedex, France (e-mail: [email protected])

Abstract

We study the gaps in the sequence of sums of h pairwise distinct elements of a given sequence in relation to the gaps in the sequence of sums of h not necessarily distinct elements of . We present several results on this topic. One of them gives a negative answer to a question by Burr and Erdős.

Type
Paper
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Erdős, P. (1998) Some of my new and almost new problems and results in combinatorial number theory. In Number Theory (Eger 1996), de Gruyter, Berlin, pp. 169180.Google Scholar
[2]Erdős, P. and Graham, R. L. (1980) Old and New Problems and Results in Combinatorial Number Theory, Vol. 28 of Monographies de L'Enseignement Mathématique.Google Scholar
[3]Erdős, P. and Rado, R. (1960) Intersection theorems for systems of sets. J. London Math. Soc. 35 8590.CrossRefGoogle Scholar
[4]Halberstam, H. and Roth, K. (1966) Sequences, Oxford University Press.Google Scholar
[5]Hegyvári, N., Hennecart, F. and Plagne, A. (2003) A proof of two Erdős' conjectures on restricted addition and further results. J. Reine Angew. Math. 560 199220.Google Scholar
[6]Hennecart, F. (2005) On the restricted order of asymptotic bases of order two. Ramanujan J. 9 123130.CrossRefGoogle Scholar
[7]Kelly, J. B. (1957) Restricted bases. Amer. J. Math. 79 258264.CrossRefGoogle Scholar
[8]Kemperman, J. H. B. (1960) On small sumsets in an abelian group. Acta Math. 103 6388.CrossRefGoogle Scholar
[9]Kneser, M. (1953) Abschätzungen der asymptotischen Dichte von Summenmengen. Math. Z. 58 459484.CrossRefGoogle Scholar
[10]Kneser, M. (1955) Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen. Math. Z. 61 429434.CrossRefGoogle Scholar
[11]Nathanson, M.B. (1996) Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Vol. 165 of Graduate Texts in Mathematics, Springer.CrossRefGoogle Scholar
[12]Plagne, A. (2004) à propos de la fonction X d'Erdős et Graham. Ann. Inst. Fourier 54 17171767.CrossRefGoogle Scholar