Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T16:35:26.872Z Has data issue: false hasContentIssue false

Space Crossing Numbers

Published online by Cambridge University Press:  16 March 2012

BORIS BUKH
Affiliation:
DPMMS, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK and Churchill College, Cambridge CB3 0DS, UK (e-mail: [email protected])
ALFREDO HUBARD
Affiliation:
Courant Institute of Mathematical Sciences, New York University, NY 10012-1185, USA (e-mail: [email protected])

Abstract

We define a variant of the crossing number for an embedding of a graph G into ℝ3, and prove a lower bound on it which almost implies the classical crossing lemma. We also give sharp bounds on the rectilinear space crossing numbers of pseudo-random graphs.

Type
Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Agarwal, P. K. and Matoušek, J. (1992) On range searching with semialgebraic sets. In Mathematical Foundations of Computer Science: Prague 1992, Vol. 629 of Lecture Notes in Computer Science, Springer, pp. 113.Google Scholar
[2]Ajtai, M., Chvátal, V., Newborn, M. M. and Szemerédi, E. (1982) Crossing-free subgraphs. In Theory and Practice of Combinatorics, Vol. 60 of North-Holland Math. Stud., North-Holland, pp. 912.Google Scholar
[3]Bárány, I. and Valtr, P. (1998) A positive fraction Erdős–Szekeres theorem. Discrete Comput. Geom. 19 335342.CrossRefGoogle Scholar
[4]Basu, S., Pollack, R. and Roy, M.-F. (2006) Algorithms in Real Algebraic Geometry, Vol. 10 of Algorithms and Computation in Mathematics, second edition, Springer. perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted2.htmlCrossRefGoogle Scholar
[5]Bienstock, D. and Dean, N. (1993) Bounds for rectilinear crossing numbers. J. Graph Theory 17 333348.CrossRefGoogle Scholar
[6]Bollobás, B. and Scott, A. D. (1993) Judicious partitions of graphs. Period. Math. Hungar. 26 125137.CrossRefGoogle Scholar
[7]Bredon, G. E. (1993) Topology and Geometry, Vol. 139 of Graduate Texts in Mathematics, Springer.CrossRefGoogle Scholar
[8]Bukh, B., Matoušek, J. and Nivasch, G.Lower bounds for weak epsilon-nets and stair-convexity. Israel J. Math. 182 199228.CrossRefGoogle Scholar
[9]Conway, J. H. and Gordon, C. M. (1983) Knots and links in spatial graphs. J. Graph Theory 7 445453.CrossRefGoogle Scholar
[10]Dey, T. K. (1998) Improved bounds for planar k-sets and related problems. Discrete Comput. Geom. 19 373382.CrossRefGoogle Scholar
[11]Diestel, R. (2005) Graph Theory, Vol. 173 of Graduate Texts in Mathematics, third edition, Springer.Google Scholar
[12]Fox, J., Gromov, M., Lafforgue, V., Naor, A. and Pach, J. (2010) Overlap properties of geometric expanders. J. Reine Angew. Math., to appear. arXiv:1005.1392Google Scholar
[13]Karasev, R. N. (2007) Tverberg's transversal conjecture and analogues of nonembeddability theorems for transversals. Discrete Comput. Geom. 38 513525.CrossRefGoogle Scholar
[14]Kostochka, A. and Pyber, L. (1988) Small topological complete subgraphs of ‘dense’ graphs. Combinatorica 8 8386.CrossRefGoogle Scholar
[15]Krivelevich, M. and B. Sudakov, B. (2006) Pseudo-random graphs. In More Sets, Graphs and Numbers, Vol. 15 of Bolyai Soc. Math. Stud., Springer, pp. 199262.CrossRefGoogle Scholar
[16]Lehec, J. (2009) On the Yao-Yao partition theorem. Arch. Math. (Basel) 92 366376. arXiv:1011.2123CrossRefGoogle Scholar
[17]Leighton, F. T. (1984) New lower bound techniques for VLSI. Math. Systems Theory 17 4770.CrossRefGoogle Scholar
[18]Nivasch, G. (2009) Weak epsilon-nets, Davenport–Schinzel sequences, and related problems. PhD thesis, Tel Aviv University. people.inf.ethz.ch/gnivasch/publications/papers/phd_thesis.pdfGoogle Scholar
[19]Pach, J., Shahrokhi, F. and Szegedy, M. (1996) Applications of the crossing number. Algorithmica 16 111117. www.cims.nyu.edu/string~pach/publications/mario.pdfCrossRefGoogle Scholar
[20]Pach, J. and Tóth, G. (1997) Graphs drawn with few crossings per edge. Combinatorica 17 427439.CrossRefGoogle Scholar
[21]Riskin, A. (1996) The crossing number of a cubic plane polyhedral map plus an edge. Studia Sci. Math. Hungar. 31 405413.Google Scholar
[22]Sachs, H. (1983) On a spatial analogue of Kuratowski's theorem on planar graphs: An open problem. In Graph Theory: Łagów 1981, Vol. 1018 of Lecture Notes in Mathematics, Springer, pp. 230241.CrossRefGoogle Scholar
[23]Székely, L. A. (1997) Crossing numbers and hard Erdős problems in discrete geometry. Combin. Probab. Comput. 6 353358.CrossRefGoogle Scholar
[24]Viro, J. (2009) Lines joining components of a link. J. Knot Theory Ramifications 18 865888. arXiv:math/0511527CrossRefGoogle Scholar
[25]Yao, A. C. and Yao, F. F. (1985) A general approach to d-dimensional geometric queries. In Proc. 17th Annual ACM Symposium on Theory of Computing: STOC '85, ACM, pp. 163168.CrossRefGoogle Scholar
[26]Živaljević, R. T. (1999) The Tverberg–Vrećica problem and the combinatorial geometry on vector bundles. Israel J. Math. 111 5376.CrossRefGoogle Scholar