Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T05:14:50.062Z Has data issue: false hasContentIssue false

Some Asymptotical Estimates for Planar Eulerian Maps

Published online by Cambridge University Press:  12 September 2008

Valery A. Liskovets
Affiliation:
Fakultäet Mathematik und Naturwiss, Technische Universitäet Dresden, Institut für Algebra, Mommsenstr. 13, D-01062 Dresden, Germany

Abstract

In this paper, asymptotical estimates of the form Rn(1+o(1)) for various classes of planar valency-restricted Eulerian maps are established. It follows, in particular, that ‘almost all’ (as n → ∞) n-edged planar Eulerian maps have n/3 (1+o(1)) vertices. A brief survey of known asymptotical results (a table of values of R) for various classes of planar maps is also presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bender, E. A. and Canfield, E. R. (1986) The asymptotic number of rooted maps on a surface, J. Combin. Th. A 43 244257.Google Scholar
[2]Bender, E. A. and Canfield, E. R. (1993) The number of degree restricted rooted maps on the sphere, SIAM J. Discr. Math. 7 1115.Google Scholar
[3]Bender, E. A. and Richmond, L. B. (1986) A survey of the asymptotic behaviour of maps, J. Combin. Th. B 40 297329.CrossRefGoogle Scholar
[4]Brown, W. G. (1965) Enumeration of quadrangular dissections of the disk, Canad. J. Math. 17 302317.CrossRefGoogle Scholar
[5]Goulden, I. P. and Jackson, D. P. (1983) Combinatorial Enumeration, John Wiley.Google Scholar
[6]Lando, S. K. and Zvonkin, A. K. (1992) Meanders, Selecta Math. Soviet. 11 117144.Google Scholar
[7]Liskovets, V. A. (1985) Enumeration of nonisomorphic planar maps, Selecta Math. Soviet. 4 303323.Google Scholar
[8]Liu, Y.-P. (1988) Enumeration of simple planar maps, Utilit. Math. 34 97104.Google Scholar
[9]Liu, Y.-P.A note on the enumeration of bipartite planar maps, Acta Math. Scientia 12 185188.Google Scholar
[10]Mullin, R. C. (1966) On the average number of trees in certain maps, Canad. J. Math. 18 3341.CrossRefGoogle Scholar
[11]Tutte, W. T. (1962) A census of planar triangulations, Canad. J. Math. 14 2138.Google Scholar
[12]Tutte, W. T. (1962) A census of slicings, Canad. J. Math. 14 708722.CrossRefGoogle Scholar
[13]Tutte, W. T. (1963) A census of planar maps, Canad. J. Math. 15 249271.CrossRefGoogle Scholar
[14]Tutte, W. T. (1984) Planar enumeration, Proc. Conf. ‘Graph Th. and Combin.’ (in honour of P. Erdös), Academic Press, London, pp. 315319.Google Scholar
[15]Walsh, T. R. S. (1975) Hypermaps versus bipartite maps. J. Combin. Th. B 18 155163.CrossRefGoogle Scholar
[16]Walsh, T. R. S. and Lehman, A. B. (1972) Counting rooted maps by genus I., J. Combin. Th. 13 192218.CrossRefGoogle Scholar
[17]Walsh, T. R. S. and Lehman, A. B. (1975) Counting rooted maps by genus. III: Nonseparable maps, J. Combin. Th. 18 222259.Google Scholar
[18]Yan, J.-Y. and Liu, Y.-P. (1991) Asymptotic enumerations for rooted planar maps and rooted outerplanar maps, Chinese Sci. Bull. 36 188192.Google Scholar