Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T05:08:06.482Z Has data issue: false hasContentIssue false

Plane Cubic Graphs with Prescribed Face Areas

Published online by Cambridge University Press:  12 September 2008

Carsten Thomassen
Affiliation:
Mathematical Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

If G is a plane, cubic graph, then G has a drawing such that each edge is a straight line segment and each bounded face has any prescribed area. The special case where all areas are the same proves a conjecture of G. Ringel, who gave an example of a plane triangulation that cannot be drawn in this way.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Fáry, I. (1948) On straight line representations of planar graphs. Acta Sci. Math. Szeged 11 229233.Google Scholar
[2]Grünbaum, B. and Shepard, G. C. (1987) Tilings and Patterns, Freeman and Co., New York.Google Scholar
[3]Ringel, G. (1990) Equiareal graphs. In: Contemporary Methods in Graph Theory, Bodendiek, R. (ed.), Wissenschaftsverlag, Mannheim503505.Google Scholar
[4]Stein, S. K. (1957) Convex maps. Proc. Amer. Math. Soc. 2 464466.CrossRefGoogle Scholar
[5]Thomassen, C. (1980) Planarity and duality of finite and infinite graphs. J. Combinatorial Theory (B) 29 244271.CrossRefGoogle Scholar
[6]Thomassen, C. (1984) Plane representations of graphs. In: Progress in Graph Theory, Bondy, J. A. and Murty, U. S. R. (eds.), Academic Press, Toronto4369.Google Scholar
[7]Tutte, W. T. (1960) Convex representations of graphs. Proc. London Math. Soc. 10 304320.CrossRefGoogle Scholar
[8]Tutte, W. T. (1960) How to draw a graph. Proc. London Math. Soc. 10 743768.Google Scholar
[9]Ungar, P. (1953) On diagrams representing maps. J. London Math. Soc. 28 336342.CrossRefGoogle Scholar
[10]Wagner, K. (1936) Bemerkungen zum Vierfarbenproblem. Jahresber. Deutsch. Math.-Verein. 46 2632.Google Scholar
[11]Wagner, K. (1970) Graphentheorie, Hochschultaschenbücher-Verlag, Mannheim.Google Scholar