Article contents
Optimal Strategy for the First Player in the Penney Ante Game
Published online by Cambridge University Press: 12 September 2008
Abstract
In the Penney Ante game two players choose one binary string of length k each in turn, and toss a coin repeatedly. If at some stage the last k outcomes match one of their strings, the player with that string wins. The case k ≤ 4 is somewhat exceptional and in any case easily done. For k ≥ 5, Guibas and Odlyzko proved that the second player's optimal strategy is to choose the first k − 1 digits of the first player's string prefixed by 0 or 1. They conjectured that these two choices are never equally good. We prove that this conjecture is correct. Then we prove that 01…100 (with k − 1 ones) is an optimal strategy for the first player, and find all the strategies that are equally good.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1992
References
- 3
- Cited by