Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-05T20:43:55.590Z Has data issue: false hasContentIssue false

On perfect subdivision tilings

Published online by Cambridge University Press:  27 January 2025

Hyunwoo Lee*
Affiliation:
Department of Mathematical Sciences, Institute for Basic Science (IBS), South Korea and Extremal Combinatorics and Probability Group(ECOPRO), KAIST, South Korea

Abstract

For a given graph $H$, we say that a graph $G$ has a perfect $H$-subdivision tiling if $G$ contains a collection of vertex-disjoint subdivisions of $H$ covering all vertices of $G.$ Let $\delta _{\mathrm {sub}}(n, H)$ be the smallest integer $k$ such that any $n$-vertex graph $G$ with minimum degree at least $k$ has a perfect $H$-subdivision tiling. For every graph $H$, we asymptotically determined the value of $\delta _{\mathrm {sub}}(n, H)$. More precisely, for every graph $H$ with at least one edge, there is an integer $\mathrm {hcf}_{\xi }(H)$ and a constant $1 \lt \xi ^*(H)\leq 2$ that can be explicitly determined by structural properties of $H$ such that $\delta _{\mathrm {sub}}(n, H) = \left (1 - \frac {1}{\xi ^*(H)} + o(1) \right )n$ holds for all $n$ and $H$ unless $\mathrm {hcf}_{\xi }(H) = 2$ and $n$ is odd. When $\mathrm {hcf}_{\xi }(H) = 2$ and $n$ is odd, then we show that $\delta _{\mathrm {sub}}(n, H) = \left (\frac {1}{2} + o(1) \right )n$.

MSC classification

Type
Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alon, N. (1990) Transversal numbers of uniform hypergraphs. Graph. Combinator. 6 14.CrossRefGoogle Scholar
Alon, N. and Yuster, R. (1996) $H$ -factors in dense graphs. J. comb. theory 66 269282. Series B.CrossRefGoogle Scholar
Andrásfai, B. (1964) Graphentheoretische extremalprobleme. Acta. Math. Hung. 15 413438.CrossRefGoogle Scholar
Arnautov, Vladimir I. (1974) Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices. Prikl. Mat. i Programmirovanie 11(3-8) 126.Google Scholar
Balogh, J., Li, L. and Treglown, A. (2022) Tilings in vertex ordered graphs. J. Comb. Theory 155 171201. Series B.CrossRefGoogle Scholar
Böttcher, J., Schacht, M. and Taraz, A. (2009) Proof of the bandwidth conjecture of Bollobás and Komlós. Math. Ann. 343 175205.CrossRefGoogle Scholar
Erdős, P. and Simonovits, M. (1965) A limit theorem in graph theory, Studia Sci. Math. Hung. Citeseer.Google Scholar
Erdős, P. and Simonovits, M. (1983) Supersaturated graphs and hypergraphs. Combinatorica 3 181192.CrossRefGoogle Scholar
Erdös, P. and Stone, A. H. (1946) On the structure of linear graphs. B. Am. Math. Soc. 52 10871091.CrossRefGoogle Scholar
Freschi, A. and Treglown, A. (2022) Dirac-type results for tilings and coverings in ordered graphs, Forum of Mathematics, Sigma, vol. 10, Cambridge University Press, pp. e104.Google Scholar
Hajnal, A. and Szemerédi, E. (1970) Proof of a conjecture of P.Erdős. Combinatorial theory and its applications 2 601623.Google Scholar
Han, J., Morris, P. and Treglown, A. (2021) Tilings in randomly perturbed graphs: Bridging the gap between hajnal-szemerédi and Johansson-Kahn-Vu. Random. Struct. Algor. 58 480516.CrossRefGoogle Scholar
Hurley, E., Joos, F. and Lang, R. (2025) Sufficient conditions for perfect mixed tilings. J. Comb. Theory 170 128188. Series B.CrossRefGoogle Scholar
Hyde, J., Liu, H. and Treglown, A. (2019) A degree sequence Komlós theorem. SIAM J. Discrete Maths. 33 20412061.CrossRefGoogle Scholar
Katona, G. O. H., Nemetz, T. and Simonovits, M. (1964) On a graph-problem of Turán in the theory of graphs. Matematikai Lapok 15 228238.Google Scholar
Kim, J., Kühn, D., Osthus, D. and Tyomkyn, M. (2019) A blow-up lemma for approximate decompositions. Trans. Am. Math. Soc. 371 46554742.CrossRefGoogle Scholar
Komlós, János (2000) Tiling Turán theorems. Combinatorica 20 203218.Google Scholar
Komlós, J., Sárközy, G. N. and Szemerédi, E. (2001) Proof of the Alon–Yuster conjecture. Discrete Math. 235 255269.CrossRefGoogle Scholar
Komlós, J., Sárközy, G. N. and Szemerédi, E. (1997) Blow-up lemma. Combinatorica 17 109123.CrossRefGoogle Scholar
Komlós, J., Shokoufandeh, A., Simonovits, M. and Szemerédi, E. (2002) The regularity lemma and its applications in graph theory, Summer school on theoretical aspects of computer science, pp. 84112.CrossRefGoogle Scholar
Komlós, J. and Simonovits, M. (1993) Szemerédi’s regularity lemma and its applications in graph theory. In Combinatorics, Paul Erdős is Eighty, Keszthely, Vol. 2, Budapest: János Bolyai Mathematical Society, pp. 295352.Google Scholar
Kühn, Daniela and Osthus, Deryk (2009) Embedding large subgraphs into dense graphs, Surveys in combinatorics, Vol. 365, Math. Soc. Lecture Note Ser., London, Cambridge: Cambridge University Press, pp. 137167.Google Scholar
Kühn, D. and Osthus, D. (2009) The minimum degree threshold for perfect graph packings. Combinatorica 29 65107.CrossRefGoogle Scholar
Kühn, D., Osthus, D. and Taraz, A. (2005) Large planar subgraphs in dense graphs. J. Comb. Theory 95 263282. Series B.CrossRefGoogle Scholar
Lo, A. and Markström, K. (2015) F-factors in hypergraphs via absorption. Graph. Combinator. 31 679712.CrossRefGoogle Scholar
Payan, C. (1975) Sur le nombre d’absorption d’un graphe simple. Cahiers Centre Études Rech. Opér. 17 307317.Google Scholar
Rödl, V., Ruciński, A. and Szemerédi, E. (2006) A Dirac-type theorem for 3-uniform hypergraphs. Combinatorics, Probability and Computing 15 229251.CrossRefGoogle Scholar
Rödl, V. and Schacht, M. (2010) Regularity lemmas for graphs, Fete of combinatorics and computer science. Springer, pp. 287325.CrossRefGoogle Scholar
Shokoufandeh, A. and Zhao, Y. (2003) Proof of a tiling conjecture of Komlós. Random Struct. Algor. 23 180205.CrossRefGoogle Scholar
Szemerédi, E. (1976) Regular partitions of graphs. In Problèmes combinatoires et théories des graphes (Colloques Internationaux du CNRS, University of Orsay, Orsay), Colloques Internationaux du CNRS, 260, CNRS, Paris, pp. 399401.Google Scholar