Published online by Cambridge University Press: 24 June 2020
Let $\{D_M\}_{M\geq 0}$ be the n-vertex random directed graph process, where $D_0$ is the empty directed graph on n vertices, and subsequent directed graphs in the sequence are obtained by the addition of a new directed edge uniformly at random. For each $$\varepsilon > 0$$ , we show that, almost surely, any directed graph $D_M$ with minimum in- and out-degree at least 1 is not only Hamiltonian (as shown by Frieze), but remains Hamiltonian when edges are removed, as long as at most $1/2-\varepsilon$ of both the in- and out-edges incident to each vertex are removed. We say such a directed graph is $(1/2-\varepsilon)$ -resiliently Hamiltonian. Furthermore, for each $\varepsilon > 0$ , we show that, almost surely, each directed graph $D_M$ in the sequence is not $(1/2+\varepsilon)$ -resiliently Hamiltonian.
This improves a result of Ferber, Nenadov, Noever, Peter and Škorić who showed, for each $\varepsilon > 0$ , that the binomial random directed graph $D(n,p)$ is almost surely $(1/2-\varepsilon)$ -resiliently Hamiltonian if $p=\omega(\log^8n/n)$ .