No CrossRef data available.
Published online by Cambridge University Press: 25 July 2019
Let G(n,M) be a uniform random graph with n vertices and M edges. Let ${\wp_{n,m}}$ be the maximum block size of G(n,M), that is, the maximum size of its maximal 2-connected induced subgraphs. We determine the expectation of ${\wp_{n,m}}$ near the critical point M = n/2. When n − 2M ≫ n2/3, we find a constant c1 such that