Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T13:35:06.523Z Has data issue: false hasContentIssue false

Duality of Ends

Published online by Cambridge University Press:  10 August 2009

HENNING BRUHN
Affiliation:
Mathematisches Seminar, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany (e-mail: [email protected])
MAYA STEIN
Affiliation:
Centro de Modelamiento Matemático, Universidad de Chile, Blanco Encalada 2120, Santiago, Chile (e-mail: [email protected])

Abstract

We investigate the end spaces of infinite dual graphs. We show that there exists a natural homeomorphism * between the end spaces of a graph and its dual, and that * preserves the ‘end degree’. In particular, * maps thick ends to thick ends. Along the way, we prove that Tutte-connectivity is invariant under taking (infinite) duals.

Type
Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bruhn, H. and Diestel, R. (2006) Duality in infinite graphs. Combin. Probab. Comput. 15 7590.CrossRefGoogle Scholar
[2]Bruhn, H. and Stein, M. (2007) On end degrees and infinite circuits in locally finite graphs. Combinatorica 27 269291.CrossRefGoogle Scholar
[3]Diestel, R. (2005) The cycle space of an infinite graph. Combin. Probab. Comput. 14 5979.CrossRefGoogle Scholar
[4]Diestel, R. (2005) Graph Theory, 3rd edn, Springer.Google Scholar
[5]Diestel, R. and Kühn, D. (2004) On infinite cycles I. Combinatorica 24 6989.CrossRefGoogle Scholar
[6]Diestel, R. and Kühn, D. (2004) On infinite cycles II. Combinatorica 24 91116.CrossRefGoogle Scholar
[7]Diestel, R. and Kühn, D. (2004) Topological paths, cycles and spanning trees in infinite graphs. Europ. J. Combin. 25 835862.CrossRefGoogle Scholar
[8]Hahn, G., Laviolette, F. and Širáň, J. (1997) Edge-ends in countable graphs. J. Combin. Theory Ser. B 70 225244.CrossRefGoogle Scholar
[9]Halin, R. (1965) Über die Maximalzahl fremder unendlicher Wege in Graphen. Math. Nachr. 30 6385.CrossRefGoogle Scholar
[10]Higgs, D. A. (1969) Matroids and duality. Colloq. Math. 20 215220.CrossRefGoogle Scholar
[11]Oxley, J. G. (1992) Infinite matroids. In Matroid Applications (White, N., ed.), Vol. 40 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, pp. 7390.CrossRefGoogle Scholar
[12]Polat, N. (1991) A Mengerian theorem for infinite graphs with ideal points. J. Combin. Theory Ser. B 51 248255.CrossRefGoogle Scholar
[13]Stein, M. (2007) Forcing highly connected subgraphs. J. Graph Theory 54 331349.CrossRefGoogle Scholar
[14]Thomassen, C. (1980) Planarity and duality of finite and infinite graphs. J. Combin. Theory Ser. B 29 244271.CrossRefGoogle Scholar
[15]Thomassen, C. (1982) Duality of infinite graphs. J. Combin. Theory Ser. B 33 137160.CrossRefGoogle Scholar
[16]Thomassen, C. and Woess, W. (1993) Vertex-transitive graphs and accessibility. J. Combin. Theory Ser. B 58 248268.CrossRefGoogle Scholar
[17]Tutte, W. T. (1966) Connectivity in matroids. Canad. J. Math. 18 13011324.CrossRefGoogle Scholar
[18]Vella, A. and Richter, R. B. (2008) Cycle spaces of topological spaces. J. Graph Theory 59 115144.CrossRefGoogle Scholar
[19]Whitney, H. (1932) Non-separable and planar graphs. Trans. Amer. Math. Soc. 34 339362.CrossRefGoogle Scholar