Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T14:06:28.941Z Has data issue: false hasContentIssue false

A Characterization of Almost-Planar Graphs

Published online by Cambridge University Press:  12 September 2008

Bradley S. Gubser
Affiliation:
Department of Mathematics, Hiram College, Hiram, OH 44234, USA Email: [email protected]

Abstract

Kuratowski's Theorem, perhaps the most famous result in graph theory, states that K5 and K3,3 are the only non-planar graphs for which both G\e, the deletion of the edge e, and G/e, the contraction of the edge e, are planar for all edges e of G. We characterize the almost-planar graphs, those non-planar graphs for which G\e or G/e is planar for all edges e of G. This paper gives two characterizations of the almost-planar graphs: an explicit description of the structure of almost-planar graphs; and an excluded minor criterion. We also give a best possible bound on the number of edges of an almost-planar graph.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bergmann, H. (1982) Ein Planaritätskriterium für endliche Graphen. Elem. Math. 37 4951.Google Scholar
[2]Bondy, J. A. and Murty, U. S. R. (1976) Graph Theory with Applications. North-Holland.CrossRefGoogle Scholar
[3]Hall, D. W. (1943) A note on primitive skew curves. Bull. Amer. Math. Soc. 49 935937.CrossRefGoogle Scholar
[4]Kuratowski, K. (1930) Sur le problème des courbes gauches en topologie. Fund. Math. 15 271283.CrossRefGoogle Scholar
[5]Negami, S. (1982) A characterization of 3-connected graphs containing a given graph. J. Combin. Theory 32 6974.CrossRefGoogle Scholar
[6]Seymour, P. D. (1980) Decomposition of regular matroids. J. Combin. Theory Ser. 528 305359.CrossRefGoogle Scholar
[7]Wagner, K. (1937) Über eine eigenshaft der ebenen komplexe. Math. Ann. 114 570590.CrossRefGoogle Scholar