Article contents
2-Bases of Quadruples
Published online by Cambridge University Press: 03 January 2006
Abstract
Let $\cal{B}(n, \leq 4)$ denote the subsets of $[n]:=\{ 1, 2, \dots, n\}$ of at most 4 elements. Suppose that $\cal{F}$ is a set system with the property that every member of $\cal{B}$ can be written as a union of (at most) two members of $\cal{F}$. (Such an $\cal{F}$ is called a 2-base of $\cal{B}$.) Here we answer a question of Erdős proving that \[|\FF|\geq 1+n+\binom{n}{2}- \Bigl\lfloor \frac{4}{3}n\Bigr\rfloor\], and this bound is best possible for $n\geq 8$.
- Type
- Paper
- Information
- Copyright
- 2006 Cambridge University Press
- 4
- Cited by