Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:58:21.992Z Has data issue: false hasContentIssue false

Viral Vector Mediated Overexpression of Human α-Synuclein in the Nigrostriatal Dopaminergic Neurons: A New Model for Parkinson's Disease

Published online by Cambridge University Press:  07 November 2014

Abstract

Parkinson's disease is predominantly a dopamine deficiency syndrome, which is produced in the brain by the loss of cells located in a small area in the ventral midbrain called the substantia nigra. Complete unilateral dopamine lesions, based on the administration of toxic substances (ie, 6-hydroxy-dopamine in rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice and primates) have been extremely useful in testing strategies of replacement. For example, the functional and biochemical impact of the transplanted ventral mesencephalic dopaminergic progenitors has been characterized to a large extent, using the complete lesion model in rats. Over the last decade, however, studies addressing the ability of neurotrophic factors to protect injured dopamine cells prompted researchers to make available partial and progressive lesion models to allow a window of opportunity to interfere the disease progression. Recent findings relating a-synuclein with Parkinson's disease pathology have opened new possibilities to develop alternative models based on the overexpression of this protein using recombinant adeno-associated viral vectors, which is valuable not only for helping to better understand its involvement in the disease process, but also to more closely resemble the neurodegeneration found in Parkinson's disease.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Parkinson, J. An Essay on the Shaking Palsy. London, England: Sherwood, Neely, Jones; 1817.Google Scholar
2. Lewy, F Paralysis agitans. I. Pathologisches anatonie. In: Lewandowsky, M, ed. Handbuch der Neurologic. Berlin, Germany: Springer; 1912:920933.Google Scholar
3. Polymeropoulos, MH, Lavedan, C, Leroy, E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997;276:20452047.CrossRefGoogle ScholarPubMed
4. Kruger, R, Kuhn, W, Muller, T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet. 1998;18:106108.CrossRefGoogle ScholarPubMed
5. Zarranz, JJ, Alegre, J, Gomez-Esteban, JC, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55:164173.CrossRefGoogle ScholarPubMed
6. Singleton, AB, Fairer, M, Johnson, J, et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science. 2003;302:841.CrossRefGoogle ScholarPubMed
7. Farrer, M, Kachergus, J, Forno, L, et al. Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol. 2004;55:174179.CrossRefGoogle ScholarPubMed
8. Chartier-Harlin, MC, Kachergus, J, Roumier, C, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet. 2004;364:11671169.CrossRefGoogle ScholarPubMed
9. Spillantini, MG, Crowther, RA, Jakes, R, Hasegawa, M, Goedert, M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinsons disease and dementia with lewy bodies. Proc Natl Acad Sci USA. 1998;95:64696473.CrossRefGoogle ScholarPubMed
10. Trojanowski, JQ, Lee, VM. Parkinson's disease and related synucleinopathies are a new class of nervous system amyloidoses. Neurotoxicology. 2002;23:457460.Google ScholarPubMed
11. Dekker, MC, Bonifati, V, van Duijn, CM. Parkinson's disease: piecing together a genetic jigsaw. Brain. 2003;126(pt 8):17221733.CrossRefGoogle ScholarPubMed
12. Snyder, H, Mensah, K, Theisler, C, Lee, J, Matouschek, A, Wolozin, B. Aggregated and monomeric alpha-synuclein bind to the S6' proteasomal protein and inhibit proteasomal function. J Biol Chem. 2003;278:1175311759.CrossRefGoogle Scholar
13. Stefanis, L, Larsen, KE, Rideout, HJ, Sulzer, D, Greene, LA, Expression of A53T mutant but not wild-type alpha-synuclein in PCI 2 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci. 2001;21:95499560.CrossRefGoogle ScholarPubMed
14. Tanaka, Y, Engelender, S, Igarashi, S, et al. Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet. 2001;10:919926.CrossRefGoogle ScholarPubMed
15. Goedert, M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci. 2001;2:492501.CrossRefGoogle ScholarPubMed
16. Clayton, OF, George, JM. Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res. 1999;58:120129.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
17. Clayton, DF, George, JM. The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 1998;21:249254.CrossRefGoogle ScholarPubMed
18. Zhu, M, Li, j, Fink, AL. The association of alpha-synuclein with membranes affects bilayer structure, stability and fibril formation. J Biol Chem. 2003;278:4018640197.CrossRefGoogle ScholarPubMed
19. Murphy, DD, Rueter, SM, Trojanowski, JQ, Lee, VM. Synucleins are developmen-tally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci. 2000;20:32143220.CrossRefGoogle Scholar
20. Abeliovich, A, Schmitz, Y, Farinas, I, et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25:239252.CrossRefGoogle ScholarPubMed
21. Cabin, DE, Shimazu, K, Murphy, D, et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci. 2002;22:87978807.CrossRefGoogle ScholarPubMed
22. Sharon, R, Bar-Joseph, I, Frosch, MP, Walsh, DM, Hamilton, JA, Selkoe, DJ. The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron. 2003;37:583595.CrossRefGoogle ScholarPubMed
23. Volles, MJ, Lansbury, PT Jr. Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry. 2002;41:45954602.CrossRefGoogle ScholarPubMed
24. Lashuel, HA, Petre, BM, Wall, J, et al. Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils, J Mol Biol. 2002;322:10891102.CrossRefGoogle ScholarPubMed
25. Conway, KA, Lee, SJ, Rochet, JC, et al. Accelerated oligomerization by Parkinson's disease linked alpha-synuclein mutants. Ann NY Acad Sci. 2000;920:4245.Google ScholarPubMed
26. Conway, KA, Harper, JD, Lansbury, PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998;4:13181320.CrossRefGoogle ScholarPubMed
27. Jensen, PH, Gliemann, J. Parkinson disease, Alpha-synuclein is the first molecular help [Danish]. Ugeskr Laeger. 1998;160:50545055.Google ScholarPubMed
28. Jo, E, Fuller, N, Rand, RP, St George-Hyslop, P, Fraser, PE. Defective membrane interactions of familial Parkinson's disease mutant A30P alpha-synuclein. J Moi Biol. 2002;315:799807.CrossRefGoogle ScholarPubMed
29. Giasson, Bl, Duda, JE, Murray, IV, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000;290:985989.CrossRefGoogle ScholarPubMed
30. Paik, SR, Shin, HJ, Lee, JH. Metal-catalyzed oxidation of alpha-synuclein in the presence of Gipper(II) and hydrogen peroxide. Arch Biochem Btophys. 2000;378:269277.CrossRefGoogle Scholar
31. Paxinou, E, Chen, Q, Weisse, M, et al. Induction of alpha-synuclein aggregation by intracellular nitrative insult. J Neurosci. 2001;21:80538061.CrossRefGoogle ScholarPubMed
32. Jenner, P. Oxidative stress in Parkinson's disease. Ann Neurol. 2003;53(suppl 3):S26–36.Google ScholarPubMed
33. Dexter, DT, Carter, CJ, Wells, FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem. 1989;52:381389.CrossRefGoogle ScholarPubMed
34. Dexter, DT, Holley, AE, Flitter, WD, et al. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mof Disord. 1994;9:9297.CrossRefGoogle ScholarPubMed
35. Sian, J, Dexter, DT, Lees, AJ, et al. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994;36:348355.CrossRefGoogle ScholarPubMed
36. Schapira, AH, Mann, VM, Cooper, JM, et al. Anatomic and disease specificity of NADH CoQl reductase (complex I) deficiency in Parkinson's disease. J Neurochem. 1990;55:21422145.CrossRefGoogle Scholar
37. Perry, TL, Yong, VW. Idiopathic Parkinson's disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett. 1986;67:269274.CrossRefGoogle ScholarPubMed
38. Mizuno, Y, Ohta, S, Tanaka, M, et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem Biophys Res Commun. 1989;163:14501455.CrossRefGoogle ScholarPubMed
39. Lestienne, P, Nelson, J, Riederer, P, Jellinger, K, Reichmann, H. Normal mitochondrial genome in brain from patients with Parkinson's disease and complex I defect. J Neurochem. 1990;55:18101812.CrossRefGoogle ScholarPubMed
40. Elkon, H, Don, J, Melamed, E, Ziv, I, Shirvan, A, Offen, D. Mutant and wild-type alpha-synuclein interact with mitochondtial cytochrome C oxidase. J Moi Neurosci. 2002;18:229238.CrossRefGoogle ScholarPubMed
41. Ko, L, Mehta, ND, Farrer, M, et al. Sensitization of neuronal cells to oxidative stress with mutated human alpha-synuclein. J Neurochem. 2000;75:25462554.CrossRefGoogle ScholarPubMed
42. Kanda, S, Bishop, JF, Eglitis, MA, Yang, Y, Mouradian, MM. Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation. Neuroscience. 2000;97:279284.CrossRefGoogle ScholarPubMed
43. Stefanova, N, Klimaschewski, L, Poewe, W, Wenning, GK, Reindl, M. Glial cell death induced by overexpression of alpha-synuclein. J Neurosci Res. 2001;65:432438.Google ScholarPubMed
44. Hsu, LJ, Sagara, Y, Arroyo, A, et al. alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol. 2000;157:401410.CrossRefGoogle ScholarPubMed
45. Turnbull, S, Tabner, BJ, El-Agnaf, OM, Moore, S, Davies, Y, Allsop, D. alpha-Synuclein implicated in Parkinson's disease catalyses the formation of hydrogen peroxide in vitro. Free Radic Biol Med. 2001;30:11631170.CrossRefGoogle ScholarPubMed
46. Lee, M, Hyun, D, Halliwell, B, Jenner, P. Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J Neurochem. 2001;76:9981009.CrossRefGoogle ScholarPubMed
47. Xu, J, Kao, SY, Lee, FJ, Song, W, Jin, LW, Yankner, BA. Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med. 2002;8:600606.Google ScholarPubMed
48. Zhou, W, Schaack, J, Zawada, WM, Freed, CR. Overexpression of human alpha-synuclein causes dopamine neuron death in primary human mesencephalic culture. Brain Res. 2002;926:4250.CrossRefGoogle ScholarPubMed
49. Lee, FJ, Liu, F, Pristupa, ZB, Niznik, HB. Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. Faseb J. 2001;15:916926.Google Scholar
50. Lotharius, J, Barg, S, Wiekop, P, Lundberg, C, Raymon, HK, Brundin, P. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem. 2002;277:3888438894.CrossRefGoogle Scholar
51. Perez, RG, Waymire, JC, Ltn, E, Liu, JJ, Guo, F, Zigmond, MJ. A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci. 2002;22:30903099.CrossRefGoogle ScholarPubMed
52. Elkon, H, Melamed, E, Offen, D. 6-Hydroxydopamine increases uhiquitin-conju-gates and protein degradation: implications for the pathogenesis of Parkinson's disease. Cell Mol Neurobiol. 2001;21:771781.Google ScholarPubMed
53. Blum, D, Torch, S, Lambeng, N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol. 2001;65:135172.CrossRefGoogle Scholar
54. Ramsay, RR, Kowal, AT, Johnson, MK, Salach, JI, Singer, TP. The inhibition site of MPP+, the neurotoxic bioactivation product of 1-methy1-4-pheny1-1,2,3,6-tetra-hydropyridine is near the Q-binding site of NADH dehydrogenase. Arch Biochem Biophys. 1987;259:645649.CrossRefGoogle Scholar
55. Singer, TP, Ramsay, RR. Mechanism of the neurotoxicity of MPTP. An update. FEBS Lett. 1990;274:18.Google ScholarPubMed
56. Lotharius, J, O'Malley, KL. The parkinsonism-inducing drug 1-methyl-4-phenylpyr-idinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem. 2000;275:3858138588.CrossRefGoogle ScholarPubMed
57. Dauer, W, Przedborski, S. Parkinson's disease: mechanisms and models. Neuron. 2003;39:889909.CrossRefGoogle ScholarPubMed
58. Gill, SS, Patel, NK, Hotton, GR, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med. May 2003;9:589595.CrossRefGoogle ScholarPubMed
59. Kirik, D, Rosenblad, C, Bjorklund, A, Mandel, RJ. Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigtal transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci. 2000;20:46864700.CrossRefGoogle Scholar
60. Tomac, A, Lindqvist, E, Lin, LF, et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature. 1995;373:335339.CrossRefGoogle ScholarPubMed
61. Kordower, JH, Emborg, ME, Bloch, J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science. 2000;290:767773.CrossRefGoogle ScholarPubMed
62. Grondin, R, Zhang, Z, Yi, A, et al. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain. 2002;125(pt 10):21912201.CrossRefGoogle ScholarPubMed
63. Betarbet, R, Sherer, TB, MacKenzie, G, Garcia-Osuna, M, Panov, AV, Greenamyre, JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000;3:13011306.Google ScholarPubMed
64. Hoglinger, GU, Feger, J, Prigent, A, et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem. 2003;84:491502.CrossRefGoogle ScholarPubMed
65. McNaught, KS, Perl, DP, Brownell, AL, Olanow, CW. Systemic exposure to pro-teasome inhibitors causes a progressive model of Parkinson's disease. Ann Neurol. 2004;56:149162.CrossRefGoogle ScholarPubMed
66. Masliah, E, Rockenstein, E, Veinbergs, I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000;287:12651269.CrossRefGoogle ScholarPubMed
67. Rathke-Hartlieb, S, Kahle, PJ, Neumann, M, et al. Sensitivity to MPTP is not increased in Parkinson's disease-associated mutant alpha-synuclein transgenic mice. J Neurochem. 2001;77:11811184.CrossRefGoogle Scholar
68. Matsuoka, Y, Vila, M, Lincoln, S, et al. Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. NeurobiolDis. 2001;8:535539.Google ScholarPubMed
69. Richfield, EK, Thiruchelvam, MJ, Cory-Slechta, DA, et al. Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol. 2002;175:3548.CrossRefGoogle ScholarPubMed
70. Giasson, BI, Duda, JE, Quinn, SM, Zhang, B, Trojanowski, JQ, Lee, VM. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron. 2002;34:521533.CrossRefGoogle ScholarPubMed
72. van der Putten, H, Wiederhold, KH, Probst, A, et al. Neuropathology in mice expressing human alpha-synuclein. J Neurosci. 2000;20:60216029.CrossRefGoogle ScholarPubMed
73. Kahle, PJ, Neumann, M, Ozmen, L, et al. Subcellular localization of wild-type and Parkinson's disease-associated mutant alpha -synuclein in human and transgenic mouse brain. J Neurosci. 2000;20:63656373.CrossRefGoogle ScholarPubMed
74. Kahle, PJ, Neumann, M, Ozmen, L, et al. Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am J Pathol. 2001;159:22152225.CrossRefGoogle Scholar
75. Feany, MB, Bender, WW. A Drosophila model of Parkinson's disease. Nature. 2000;404:394398.CrossRefGoogle ScholarPubMed
76. Haass, C, Kahle, PJ. Parkinson's pathology in a fly. Nature. 2000;404:341343.CrossRefGoogle ScholarPubMed
77. Lakso, M, Vartiainen, S, Moilanen, AM, et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem. 2003;86:165172.CrossRefGoogle ScholarPubMed
78. Kirik, D, Annett, LE, Burger, C, Muzyczka, N, Mandel, RJ, Bjorklund, A. Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson's disease. Proc Natl Acad Sci U S A. 2003;100:28842889.CrossRefGoogle ScholarPubMed
79. Kirik, D, Rosenblad, C, Burger, C, et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci. 2002;22:27802791.CrossRefGoogle ScholarPubMed
80. Lo Bianco, C, Ridet, JL, Schneider, BL, Deglon, N, Aebischer, P. alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc Natl Acad Sci USA. 002;99:1081310818.CrossRefGoogle Scholar
81. Lauwers, E, Debyser, Z, Van Dorpe, J, De Strooper, B, Nuttin, B, Baekelandt, V. Neuropathology and neurodegeneration in rodent brain induced by lentiviral vector-mediated overexpression of alpha-synuclein. Brain Pathol. 2003;13:364372.CrossRefGoogle ScholarPubMed
82. Muzyczka, N. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol. 1992;158:97129.Google ScholarPubMed
83. Grimm, D, Kay, MA. From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther. 2003;3:281304.Google ScholarPubMed
84. Mandel, RJ, Spratt, SK, Snyder, RO, Leff, SE. Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson's disease in rats. Proc Nad Acad Sci USA. 1997;94:1408314088.CrossRefGoogle Scholar
85. Bartlett, JS, Samulski, RJ, McCown, TJ. Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther. 1998;9:11811186.CrossRefGoogle ScholarPubMed
86. Peel, AL, Zolotukhin, S, Schrimsher, GW, Muzyczka, N, Reier, PJ. Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Ther. 1997;4:1624.Google ScholarPubMed
87. Kirik, D, Rosenblad, C, Bjorklund, A. Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur J Neurosci. 2000;12:38713882.CrossRefGoogle ScholarPubMed
88. Kirik, D, Rosenblad, C, Bjorklund, A. Characterization of behavioral and neurtxlegen-erative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol. 1998;152:259277.CrossRefGoogle ScholarPubMed
89. Sauer, H, Rosenblad, C, Bjorklund, A. Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc Natl Acad Sci U S A. 1995;92:89358939.CrossRefGoogle Scholar
90. Klein, RL, King, MA, Hamby, ME, Meyer, EM. Dopaminergic cell loss induced by human A30P alpha-synuclein gene transfer to the rat substantia nigra. Hum Gene Ther. 2002;13:605612.CrossRefGoogle Scholar
91. Schmidt, N, Ferger, B. Neuroprotective effects of (+/-)-kavain in the MPTP mouse model of Parkinson's disease. Synapse. 2001;40:4754.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
92. Schmidt, N, Ferger, B. Neurochemical findings in the MPTP model of Parkinson's disease. J Neural Transm. 2001;108:12631282.CrossRefGoogle ScholarPubMed
93. Petroske, E, Meredith, GE, Callen, S, Totterdell, S, Lau, YS. Mouse model of parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neurosrience. 2001;106:589601.CrossRefGoogle ScholarPubMed
94. Alam, M, Schmidt, WJ. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res. 2002;136:317324.CrossRefGoogle ScholarPubMed
95. Brooks, AI, Chadwick, CA, Gelbard, HA, Cory-Slechta, DA, Federoff, HJ. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res. 1999;823:110.CrossRefGoogle ScholarPubMed
96. Manning-Bog, AB, McCormack, AL, Li, J, Uversky, VN, Fink, AL, Di Monte, DA. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem. 2002;277:16411644.CrossRefGoogle ScholarPubMed
97. McCormack, AL, Thiruchelvam, M, Manning-Bog, AB, et al. Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis. 2002;10:119127.CrossRefGoogle ScholarPubMed
98. de Almeida, LP, Ross, CA, Zala, D, Aebischer, P, Deglon, N. Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. J Neurosci. 2002;22:34733483.Google ScholarPubMed
99. Braak, H, Braak, E. Pathoanatomy of Parkinson's disease. J Neurol. 2000;247(suppl 2):II3II10.CrossRefGoogle ScholarPubMed