Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T05:03:40.301Z Has data issue: false hasContentIssue false

Transcranial direct current stimulation in combination with cognitive training in individuals with mild cognitive impairment: a controlled 3-parallel-arm study

Published online by Cambridge University Press:  12 September 2022

Stefano Pallanti*
Affiliation:
Department of Family and Social Medicine, Albert Einstein College of Medicine, New York, NY, USA Institute of Neuroscience, Florence, Italy
Eleonora Grassi
Affiliation:
Institute of Neuroscience, Florence, Italy
Helena Knotkova
Affiliation:
Department of Family and Social Medicine, Albert Einstein College of Medicine, New York, NY, USA MJHS Institute for Innovation in Palliative Care, New York, NY, USA
Giulia Galli
Affiliation:
Department of Psychology, Kingston University, Kingston, UK
*
*Author for correspondence: Stefano Pallanti, MD, PhD Email: [email protected]

Abstract

Objective

Several studies showed that transcranial direct current stimulation (tDCS) enhances cognition in patients with mild cognitive impairment (MCI), however, whether tDCS leads to additional gains when combined with cognitive training remains unclear. This study aims to compare the effects of a concurrent tDCS-cognitive training intervention with either tDCS or cognitive training alone on a group of patients with MCI.

Methods

The study was a 3-parallel-arm study. The intervention consisted of 20 daily sessions of 20 minutes each. Patients (n = 62) received anodal tDCS to the left dorsolateral prefrontal cortex, cognitive training on 5 cognitive domains (orientation, attention, memory, language, and executive functions), or both. To examine intervention gains, we examined global cognitive functioning, verbal short-term memory, visuospatial memory, and verbal fluency pre- and post-intervention.

Results

All outcome measures improved after the intervention in the 3 groups. The improvement in global cognitive functioning and verbal fluency was significantly larger in patients who received the combined intervention. Instead, the intervention gain in verbal short-term memory and visuospatial memory was similar across the 3 groups.

Discussion

tDCS, regardless of the practicalities, could be an efficacious treatment in combination with cognitive training given the increased effectiveness of the combined treatment.

Conclusions

Future studies will need to consider individual differences at baseline, including genetic factors and anatomical differences that impact the electric field generated by tDCS and should also consider the feasibility of at-home treatments consisting of the application of tDCS with cognitive training.

Type
Original Research
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

DeCarli, C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol. 2003;2(1):1521. doi:10.1016/s1474-4422(03)00262-x.CrossRefGoogle Scholar
Petersen, RC, Smith, GE, Waring, SC, Ivnik, RJ, Tangalos, EG, Kokmen, E. Mild cognitive impairment. Arch Neurol. 1999;56(3):303. doi:10.1001/archneur.56.3.303.CrossRefGoogle ScholarPubMed
Petersen, RC, Caracciolo, B, Brayne, C, Gauthier, S, Jelic, V, Fratiglioni, L. Mild cognitive impairment: a concept in evolution. J Int Med. 2014;275(3):214228. doi:10.1111/joim.12190.CrossRefGoogle Scholar
Petersen, RC, Negash, S. Mild cognitive impairment: An overview. CNS Spectrums. 2008;13(1):4553. doi:10.1017/s1092852900016151.CrossRefGoogle Scholar
Bennett, DA, Wilson, RS, Schneider, JA, et al. Natural history of mild cognitive impairment in older persons. Neurology. 2002;59(2):198205. doi:10.1212/wnl.59.2.198.CrossRefGoogle Scholar
Hu, C, Yu, D, Sun, X, Zhang, M, Wang, L, Qin, H. The prevalence and progression of mild cognitive impairment among clinic and community populations: a systematic review and meta-analysis. Int Psychogeriatrics. 2017;29(10):15951608. doi:10.1017/s1041610217000473.CrossRefGoogle Scholar
Langbaum, JB, Fleisher, AS, Chen, K, et al. Ushering in the study and treatment of preclinical Alzheimer disease. Nat Rev Neurol. 2013;9(7):371381. doi:10.1038/nrneurol.2013.107 CrossRefGoogle Scholar
Nitsche, MA, Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulationJ Physiol. 2000;527(3):633639. doi:10.1111/j.1469-7793.2000.t01-1-00633.x.CrossRefGoogle Scholar
Kuo, MF, Paulus, W, Nitsche, MA. Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. NeuroImage. 2014;85:948960. doi:10.1016/j.neuroimage.2013.05.117.CrossRefGoogle Scholar
Martinotti, G, Lupi, M, Montemitro, C, et al. Transcranial direct current stimulation reduces craving in substance use disorders: a double-blind, placebo-controlled study. J ECT. 2019;35(3):207211.CrossRefGoogle Scholar
Lupi, M, Martinotti, G, Santacroce, R, et al. Transcranial direct current stimulation in substance use disorders: a systematic review of scientific literature. J ECT. 2017;33(3):203209.CrossRefGoogle ScholarPubMed
Feyzi, Y F, Vahed, N, Nikraftar, NS, Arezoomandan, R. Synergistic effect of combined transcranial direct current stimulation and Matrix Model on the reduction of methamphetamine craving and improvement of cognitive functioning: a randomized sham-controlled study. Am J Drug Alcohol Abuse. 2022;11:110.Google Scholar
Park, J, Oh, Y, Chung, K, Kim, KJ, Kim, CO, Park, JY. Effect of home-based transcranial direct current stimulation (tDCS) on cognitive function in patients with mild cognitive impairment: a study protocol for a randomized, double-blind, cross-over study. Trials. 2019;20(1). doi:10.1186/s13063-019-3360-1.CrossRefGoogle Scholar
Yun, K, Song, IU, Chung, YA. Changes in cerebral glucose metabolism after 3 weeks of noninvasive electrical stimulation of mild cognitive impairment patients. Alzheimer’s Res Ther. 2016;8(1). doi:10.1186/s13195-016-0218-6.Google Scholar
Meinzer, M, Lindenberg, R, Phan, MT, Ulm, L, Volk, C, Flöel, A. Transcranial direct current stimulation in mild cognitive impairment: behavioral effects and neural mechanisms. Alzheimer’s Dementia. 2014;11(9):10321040. doi:10.1016/j.jalz.2014.07.159.CrossRefGoogle Scholar
Murugaraja, V, Shivakumar, V, Sivakumar, PT, Sinha, P, Venkatasubramanian, G. Clinical utility and tolerability of transcranial direct current stimulation in mild cognitive impairment. Asian J Psychiatry. 2017;30:135140. doi:10.1016/j.ajp.2017.09.001.CrossRefGoogle Scholar
Fileccia, E, Di Stasi, V, Poda, R, et al. Effects on cognition of 20-day anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex in patients affected by mild cognitive impairment: a case-control study. Neurol Sci. 2019;40(9):18651872. doi:10.1007/s10072-019-03903-6.CrossRefGoogle Scholar
Gomes, MA, Akiba, HT, Gomes, JS, Trevizol, AP, de, LALT, Dias, ÁM. Transcranial direct current stimulation (tDCS) in elderly with mild cognitive impairment: a pilot study. Dementia Neuropsychologia. 2019;13(2):187195. doi:10.1590/1980-57642018dn13-020007.CrossRefGoogle Scholar
Manenti, R, Sandrini, M, Gobbi, E, Binetti, G, Cotelli, M. Effects of transcranial direct current stimulation on episodic memory in amnestic mild cognitive impairment: a pilot studyJ Gerontol B. 2018. doi:10.1093/geronb/gby134.Google Scholar
Miniussi, C, Harris, JA, Ruzzoli, M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Revi. 2019;37(8):17021712.CrossRefGoogle Scholar
Martin, DM, Mohan, A, Alonzo, A, et al. A pilot double-blind randomized controlled trial of cognitive training combined with transcranial direct current stimulation for amnestic mild cognitive impairment. J Alzheimer’s Dis. 2019;71(2):503512. doi:10.3233/jad-190306.CrossRefGoogle Scholar
Gonzalez, PC, Fong, KNK, Brown, T. Transcranial direct current stimulation as an adjunct to cognitive training for older adults with mild cognitive impairment: A randomized controlled trialAnn Phys Rehab Med. 2021;64(5):101536. doi: 10.1016/j.rehab.2021.101536.CrossRefGoogle Scholar
Das, N, Spence, JS, Aslan, S, et al. Cognitive training and transcranial direct current stimulation in mild cognitive impairment: a randomized pilot trialFront Neurosci. 2019;13. doi:10.3389/fnins.2019.00307 Google Scholar
Cotelli, M, Manenti, R, Brambilla, M, et al. Anodal tDCS during face-name associations memory training in Alzheimer’s patientsFront Aging Neurosci. 2014;6. doi:10.3389/fnagi.2014.00038.Google Scholar
Chu, CS, Li, CT, Brunoni, AR, et al. Cognitive effects and acceptability of non-invasive brain stimulation on Alzheimer’s disease and mild cognitive impairment: a component network meta-analysis. J Neurol Neurosurg Psychiatry. 2021;92(2):195203. doi:10.1136/jnnp-2020-32387.CrossRefGoogle Scholar
Lu, H, Chan, SSM, Chan, WC, Lin, C, Cheng, CPW, Linda Chiu Wa, L. Randomized controlled trial of TDCS on cognition in 201 seniors with mild neurocognitive disorder. Ann Clin Transl Neurol. 2019;6(10):19381948. doi:10.1002/acn3.50823.CrossRefGoogle Scholar
de Sousa, AVC, Grittner, U, Rujescu, D, Külzow, N, Flöel, A. Impact of 3-day combined anodal transcranial direct current stimulation-visuospatial training on object-location memory in healthy older adults and patients with mild cognitive impairmentJ Alzheimer’s Dis. 2020:122. doi:10.3233/jad-191234.Google Scholar
Sanches, C, Stengel, C, Godard, J, et al. Past, present, and future of non-invasive brain stimulation approaches to treat cognitive impairment in neurodegenerative diseases: time for a comprehensive critical review. Front Aging Neurosci. 2021; 12:578339. doi: 10.3389/fnagi.2020.578339.CrossRefGoogle Scholar
Fregni, F, El-Hagrassy, MM, Pacheco-Barrios, K, et al. Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation in neurological and psychiatric disorders. Int J NeuroPsychopharmacol. 2021;24(4):256313. doi: 10.1093/ijnp/pyaa051.CrossRefGoogle Scholar
Chu, CS, Li, CT, Brunoni, AR, et al.. Cognitive effects and acceptability of non-invasive brain stimulation on Alzheimer’s disease and mild cognitive impairment: a component network meta-analysis. J Neurol Neurosurg Psychiatry. 2021;92(2):195203. doi: 10.1136/jnnp-2020-323870.CrossRefGoogle Scholar
Kroenke, K, Spitzer, RL, Williams, JBW. The PHQ-9: validity of a brief depression severity measureJ General Int Med. 2001;16(9):606613. doi:10.1046/j.1525-1497.2001.016009606.x.CrossRefGoogle Scholar
Bergamaschi, S, Iannizzi, P, Mondini, S, Mapelli, D. Il Training Cognitivo per le Demenze e le Cerebrolesioni Acquisite. 2007. Raffaele Cortina Editore.Google Scholar
Folstein, MF. The mini-mental state examination. Arch Gen Psychiatry. 1983;40(7):812. doi:10.1001/archpsyc.1983.01790060110016.CrossRefGoogle ScholarPubMed
Wambach, D, Lamar, M, Swenson, R, Penney, DL, Kaplan, E, Libon, DJ. Digit spanEncycl Clin Neuropsychol. 2011:844849. doi:10.1007/978-0-387-79948-3_1288.CrossRefGoogle Scholar
De Renzi, E, Nichelli, P. Verbal and non-verbal short-term memory impairment following hemispheric damage. Cortex. 1975;11(4):341354.CrossRefGoogle Scholar
Novelli, G., et al. Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normaliArch Psicol Neurol Psichiatria. 1986.Google Scholar
Liu, CS, Rau, A, Gallagher, D, Rajji, TK, Lanctôt, KL, Herrmann, N. Using transcranial direct current stimulation to treat symptoms in mild cognitive impairment and Alzheimer’s disease. Neurodegener Dis Manag. 2017;7(5):317329. doi:10.2217/nmt-2017-0021.CrossRefGoogle Scholar
Miller, EK, Cohen, JD. An integrative theory of prefrontal cortex function. Ann Rev Neurosci. 2001;24(1):167202. doi:10.1146/annurev.neuro.24.1.167.CrossRefGoogle Scholar