Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T12:53:38.615Z Has data issue: false hasContentIssue false

Sex Steroids and Human Behavior: Implications for Developmental Psychopathology

Published online by Cambridge University Press:  07 November 2014

Abstract

In a variety of mammalian species, prenatal androgens organize brain structures and functions that are later activated by steroid hormones in postnatal life. In humans, studies of individuals with typical and atypical development suggest that sex differences in reproductive and nonreproductive behavior derive in part from similar prenatal and postnatal steroid effects on brain development. This paper provides a summary of research investigating hormonal influences on human behavior and describes how sex differences in the prevalences and natural histories of developmental psychopathologies may be consistent with these steroid effects. An association between patterns of sexual differentiation and specific forms of psychopathology suggests novel avenues for assessing the effects of sex steroids on brain structure and function, which may in turn improve our understanding of typical and atypical development in women and men.

Type
Feature Article
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Weissman, MM, Klerman, GL. Sex differences and the epidemiology of depression. Arch Gen Psychiatry. 1977;34:98111.CrossRefGoogle ScholarPubMed
2.Pigott, TA. Gender differences in the epidemiology and treatment of anxiety disorders. J Clin Psychiatry. 1999;60:415.Google ScholarPubMed
3.Zohar, J, Gross-Isseroff, R, Hermesh, H, Weizman, A. Is there sexual dimorphism in obsessive-compulsive disorder. Neurosci Biobehav Rev. 1999;23:845849.CrossRefGoogle ScholarPubMed
4.Lex, B. Gender differences and substance abuse. Adv Substance Abuse. 1991;4:225296.Google Scholar
5.Tallal, P. Hormonal influences in developmental learning disabilities. Psychoneuroendocrinology. 1991;18:141153.Google Scholar
6.Peterson, BS. Considerations of natural history and pathophysiology in the psychopharmacology of Tourette's syndrome. J Clin Psychiatry. 1996;57(suppl 9):2434.Google ScholarPubMed
7.Hafner, H, van der Heiden, W. Epidemiology of schizophrenia. Can J Psychiatry. 1997;42:139151.CrossRefGoogle ScholarPubMed
8.Keshavan, MS, Hogarty, GE. Brain maturational processes and delayed onset in schizophrenia. Dev Psychopathol. 1999;11:525543.CrossRefGoogle ScholarPubMed
9.Swedo, SE, Rapoport, JL, Leonard, H, et al.Obsessive-compulsive disorder in children and adolescents: clinical phenomenology of 70 consecutive cases. Arch Gen Psychiatry. 1989;46:335341.CrossRefGoogle ScholarPubMed
10.Rapoport, JL, Swedo, SE, Leonard, HL. Childhood obsessive compulsive disorder: a review. J Clin Psychiatry. 1992;53:1116.Google Scholar
11.Al-Issa, I. Gender and child psychopathology. In: Al-Issa, I, ed. Gender and Psychopathology. New York, NY: Academic Press; 1982:5382.CrossRefGoogle Scholar
12.Al-Issa, I. Gender and psychopathology in perspective. In: Al-Issa, I, ed. Gender and Psychopathology. New York, NY: Academic Press; 1982:330.CrossRefGoogle Scholar
13.Condry, J, Condry, S. Sex differences: a study of the eye of the beholder. Annu Prog Child Psychiatry Child Dev. 1977:289301.Google Scholar
14.Maccoby, EE. Gender as a social category. Developmental Psych. 1988;24:755765.CrossRefGoogle Scholar
15.Alexander, GM, Hines, M. Gender labels and play styles: their relative contribution to children's selection of playmates. Child Dev. 1994;65:869879.CrossRefGoogle ScholarPubMed
16.Campbell, DW, Eaton, WO. Sex differences in the activity level of infants. Infant Child Dev. 1999;8:117.3.0.CO;2-O>CrossRefGoogle Scholar
17.Eaton, WO, Enns, LR. Sex differences in human motor activity level. Psychol Bull. 1986;100:1928.CrossRefGoogle ScholarPubMed
18.Martin, CL, Halverson, CF. A schematic processing model of sex typing and stereotyping in children. Child Dev. 1981;52:11191134.CrossRefGoogle Scholar
19.Martin, CL, Little, JK. The relation of gender understanding to children's sex-typed preferences and gender stereotypes. Child Dev. 1990;61:14271439.CrossRefGoogle ScholarPubMed
20.Martin, CL. A developmental perspective on gender effects and gender concepts. In: Swann, WB Jr.Langlois, JH, eds. Sexism and Stereotypes in Modern Society: The Gender Science of Janet Taylor Spence. Washington, DC: American Psychological Association; 1999:4573.Google Scholar
21.Simon, W, Gagnon, JH. Sexual scripts: permanence and change. Arch Sex Behav. 1986;15:97120.CrossRefGoogle ScholarPubMed
22.Bem, SL. Gender schema theory: a cognitive account of sex typing. Psychol Rev. 1981;88:354364.CrossRefGoogle Scholar
23.Feingold, A. Gender differences in personality: a meta-analysis. Psychol Bull. 1994;116:429456.CrossRefGoogle ScholarPubMed
24.Marsh, L, Casper, RC. Gender differences in brain morphology and in psychiatric disorders. In: Casper, RC, ed. Women's Health: Hormones, Emotions, and Behavior. Cambridge, UK: Cambridge University Press; 1998:5382.Google Scholar
25.Rosenfield, S. Gender and dimensions of the self. In: Frank, E, ed. Gender and Its Effects on Psychopathology. Washington, DC: American Psychiatric Press; 2000:2336.Google Scholar
26.Seeman, MV. Psychopathology in women and men: focus on female hormones. Am J Psychiatry. 1997;154:16411647.CrossRefGoogle ScholarPubMed
27.Rubinow, DR, Schmidt, PJ. Androgens, brain, and behavior. Am J Psychiatry. 1996;153:974984.Google ScholarPubMed
28.McEwen, BS, Alves, SE, Bulloch, K, et al.Clinically relevant basic science studies of gender differences and sex hormone effects. Psychopharmacol Bull. 1998;34:251259.Google ScholarPubMed
29.Breedlove, SM, Cooke, BM, Jordan, CL. The orthodox view of brain sexual differentiation. Brain Behav Evol. 1999;54:814.CrossRefGoogle ScholarPubMed
30.Cooke, B, Hegstrom, CD, Villeneuve, LS, et al.Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol. 1998;19:323362.CrossRefGoogle ScholarPubMed
31.Collaer, ML, Hines, M. Human behavioral sex differences: a role for gonadal hormones during early development? Psychol Bull. 1995;118:55107.CrossRefGoogle ScholarPubMed
32.Goy, RW, Deputte, BL. The effects of diethylstilbestrol (DES) before birth on the development of masculine behavior in juvenile female rhesus monkeys: errata. Horm Behav. 1997;32:69.CrossRefGoogle Scholar
33.Gorski, RA, Barraclough, CA. Effects of low dosages of androgen on the differentiation of hypothalamic regulatory control of ovulation in the rat. Endocrinology. 1963;73:210216.CrossRefGoogle ScholarPubMed
34.Gorski, RA. The neuroendocrinology or reproduction: an overview. Biol Reprod. 1979;20:111127.CrossRefGoogle ScholarPubMed
35.Warne, GL, Zajac, JD. Disorders of sexual differentiation. In: Burger, HG, McLachlan, RI, eds. Gonadal Disorders. Philadelphia, Penn: WB Saunders; 1998:945967.Google Scholar
36.Naftolin, F, Ryan, KJ, Davies, IJ, et al.The formation of estrogens by central neuroendocrine tissues. Recent Prog Horm Res. 1975;31:295298.Google ScholarPubMed
37.MacLusky, NJ, Bowlby, DA, Brown, TJ, et al.Sex and the developing brain: suppression of neuronal estrogen sensitivity by developmental androgen exposure. Neurochem Res. 1997;22:13951414.CrossRefGoogle ScholarPubMed
38.MacLusky, NJ, Naftolin, F. Sexual differentiation of the central nervous system. Science. 1981;211:12941302.CrossRefGoogle ScholarPubMed
39.Slikker, W, Hill, DE, Young, JF. Comparison of transplacental pharmacokinetics of 17β-estradiol and diethylstilbestrol in the subhuman primate. J Pharmacol Exp Ther. 1982;221:173182.Google ScholarPubMed
40.Beyer, C. Estrogen and the developing mammalian brain. Anat Embryol. 1999;199:379390.CrossRefGoogle ScholarPubMed
41.Arnold, AP, Gorski, RA. Gonadal steroid induction of structural sex differences in the central nervous system. Annu Rev Neurosci. 1984;7:413442.CrossRefGoogle ScholarPubMed
42.Diamond, MC. Hormonal effects on the development of cerebral lateralization. Psychoneuroendocrinology. 1991;16:121129.CrossRefGoogle ScholarPubMed
43.Dekaban, AS, Sadowsky, D. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol. 1978;4:345356.CrossRefGoogle ScholarPubMed
44.Giedd, JN, Castellanos, FX, Rajapakse, JC, et al.Sexual dimorphism of the developing human brain. Prog Neuropsychopharmacol Biol Psychiatry. 1997;21:11811201.CrossRefGoogle ScholarPubMed
45.Allen, LS, Gorski, RA. Sexual dimorphism of the anterior commissure and massa intermedia of the human brain. J Comp Neurol. 1991;312:97104.CrossRefGoogle ScholarPubMed
46.Allen, LS, Richey, MF, Chai, YM, et al.Sex differences in the corpus callosum of the living human being. J Neurosci. 1991;11:933942.CrossRefGoogle ScholarPubMed
47.De Lacoste-Utamsing, C, Holloway, RL. Sexual dimorphism in the human corpus callosum. Science. 1982;216:14311432.CrossRefGoogle ScholarPubMed
48.Allen, LS, Hines, M, Shryne, JE, et al.Two sexually dimorphic cell groups in the human brain. J Neurosci. 1989;9:497506.CrossRefGoogle ScholarPubMed
49.Hines, M, Allen, LS, Gorski, RA. Sex differences in subregions of the medial nucleus of the amygdala and the bed nucleus of the stria terminalis of the rat. Brain Res. 1992;579:321326.CrossRefGoogle ScholarPubMed
50.Frederiskse, ME, Lu, A, Aylward, E, et al.Sex differences in the inferior parietal lobule. Cereb Cortex. 1999;9:896901.CrossRefGoogle Scholar
51.Breedlove, SM. Sexual differentiation of the human nervous system. Annu Rev Psychol. 1994;45:389418.CrossRefGoogle ScholarPubMed
52.Davis, EC, Shryne, JE, Gorski, RA. Structural sexual dimorphisms in the anteroventral periventricular nucleus of the rat hypothalamus are sensitive to gonadal steroids perinatally, but develop peripubertally. Neuroendocrinology. 1996;63:142148.CrossRefGoogle ScholarPubMed
53.Arnold, AP, Breedlove, SM. Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. Horm Behav. 1985;19:469498.CrossRefGoogle ScholarPubMed
54.Moore, FL, Evans, SJ. Steroid hormones use non-genomic mechanisms to control brain functions and behaviors: a review of evidence. Brain Behav Evol. 1999;54:4150.CrossRefGoogle ScholarPubMed
55.McEwen, BS. Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol Sci. 1991;12:141147.CrossRefGoogle ScholarPubMed
56.Schmidt, BMW, Gerdes, D, Feuring, M, et al.Rapid, nongenomic steroid actions: a new age. Front Neuroendocrinol. 2000;21:5794.CrossRefGoogle ScholarPubMed
57.Orentreich, N, Brind, JL, Rizer, RL, et al.Age changes and sex differences in serum dehydroepiandrosterone sulfate concentration throughout adulthood. J Clin Endocrinol Metab. 1984;59:551555.CrossRefGoogle ScholarPubMed
58.De Peretti, E, Forest, MG. Unconjugated dehydroepiandrosterone plasma levels in normal subject from birth to adolescence in humans: the use of a sensitive radioimmunoassay. J Clin Endocrinol Metab. 1976;43:982991.CrossRefGoogle ScholarPubMed
59.Wisniewski, AB, Nelson, RJ. Seasonal variation in human functional cerebral lateralization and free testosterone concentrations. Brain Cogn. 2000;43:429438.Google ScholarPubMed
60.Meriggiola, MC, Noonan, EA, Paulsen, CA, et al.Annual patterns of luteinizing hormone, follicle stimulating hormone, testosterone and inhibin in normal men. Hum Reprod. 1996;11:248252.CrossRefGoogle ScholarPubMed
61.Dabbs, JM Jr.Age and seasonal variation in serum testosterone concentration among men. Chronobiol Int. 1990;7:245249.CrossRefGoogle ScholarPubMed
62.Apter, D. Development of the hypothalamic-pituitaryovarian axis. Ann NY Acad Sci. 1997;816:921.CrossRefGoogle Scholar
63.Cutler, WB, Garcia, CR. The psychoneuroendocrinology of the ovulatory cycle of woman: a review. Psychoneuroendocrinology. 1980;5:89111.CrossRefGoogle ScholarPubMed
64.Nulsen, JC, Peluso, JJ. Regulation of ovarian steroid production. In: Luciano, AA, Metzger, DA, eds. Sex Steroids. Philadelphia, Penn: WB Saunders; 1992:4358.Google Scholar
65.Vermeulen, A, Verdonck, L. Plasma androgen levels during the menstrual cycle. Am J Obstet Gynecol. 1976;125:4911.CrossRefGoogle ScholarPubMed
66.Simon, NG, Whalen, RE. Sexual differentiation of androgen-sensitive and estrogen-sensitive regulatory systems for aggressive behavior. Horm Behav. 1987;21:493500.CrossRefGoogle ScholarPubMed
67.Meaney, MJ, McEwen, BS. Testosterone implants into the amygdala during the neonatal period masculinize the social play of juvenile female rats. Brain Res. 1986;398:324328.CrossRefGoogle ScholarPubMed
68.Meaney, MJ. The sexual differentiation of social play. Trends Neurosci. 1988;11:5458.CrossRefGoogle ScholarPubMed
69.Williams, CL, Barnett, AM, Meek, WH. Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behav Neurosci. 1990;104:8497.CrossRefGoogle ScholarPubMed
70.Dixson, AF, Brown, GR, Nevison, CM. Developmental significance of the postnatal testosterone “surge“ in male primates. In: Ellis, L, Ebertz, L, eds. Males, Females, and Behavior: Toward Biological Understanding. Westport, Conn: Praeger Publishers/Greenwood Publishing Group; 1998:129145.Google Scholar
71.Byne, W, Parsons, B. Human sexual orientation: the biologic theories reappraised. Arch Gen Psychiatry. 1993;50:228239.CrossRefGoogle ScholarPubMed
72.Halpern, DF. Sex Differences in Cognitive Abilities. Hillsdale, NJ: Erlbaum; 1992.Google Scholar
73.Shaywitz, BA, Shaywitz, SE, Pugh, KR, et al.Sex differences in the functional organization of the brain for language. Nature. 1995;373:607609.CrossRefGoogle ScholarPubMed
74.McGlone, J. Sex differences in brain asymmetry: a critical survey. Behav Brain Sci. 1980;3:215227.CrossRefGoogle Scholar
75.DiPietro, JA. Rough and tumble play: a function of gender. Dev Psychol. 1981;17:5058.CrossRefGoogle Scholar
76.Blurton-Jones, N, Konner, MJ. Sex differences in behavior of London and Bushman children. In: Michael, RP, Crook, JH, eds. Comparative Ecology and Behavior of Primates. London, UK: Academic Press; 1973.Google Scholar
77.Archer, J. The influence of testosterone on human aggression. Br J Psychol. 1991;82:128.CrossRefGoogle ScholarPubMed
78.Linn, MC, Petersen, AC. Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Dev. 1974;56:14791498.CrossRefGoogle Scholar
79.Voyer, D, Voyer, S, Bryden, MP. Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol Bull. 1995;117:250270.CrossRefGoogle ScholarPubMed
80.Collins, DW, Kimura, D. A large sex difference on a two-dimensional mental rotation task. Behav Neurosci. 1997;111:845849.CrossRefGoogle ScholarPubMed
81.Connor, JM, Serbin, LA. Behaviorally based masculine-and feminine-activity preferences scales for preschoolers: correlates with other classroom behaviors and cognitive tests. Child Dev. 1977;48:14111416.CrossRefGoogle Scholar
82.Hyde, JS, Linn, MC. Gender differences in verbal ability: a meta-analysis. Psychol Bull. 1988;104:5369.CrossRefGoogle Scholar
83.Maccoby, EE, Jacklin, CN. The Psychology of Sex Differences. Stanford, Calif: Stanford University Press; 1974:xiii,634.Google Scholar
84.Silverman, I, Eals, M. Sex differences in spatial abilities: evolutionary theory and data. In: Barkow, JH, Cosmides, L, Tooby, J, eds. The Adapted Mind. New York, NY: Oxford University Press; 1992:533549.CrossRefGoogle Scholar
85.James, TW, Kimura, D. Sex differences in remembering the locations of objects in an array: location-shifts versus location-exchanges. Evol Hum Behav. 1997;18:155163.CrossRefGoogle Scholar
86.Wilson, JD. The role of androgens in male gender role behavior. Endocr Rev. 1999;20:726737.CrossRefGoogle ScholarPubMed
87.Hines, M, Shipley, C. Prenatal exposure to diethylstilbestrol (DES) and the development of sexually dimorphic cognitive abilities and cerebral lateralization. Dev Psychol. 1984;20:8194.CrossRefGoogle Scholar
88.Netley, C, Rovet, J. Relations between a dermatoglyphic measure, hemispheric specialization, and intellectual abilities in 47 XXY males. Brain Cogn. 1987;6:153160.CrossRefGoogle ScholarPubMed
89.Smith, LL, Hines, M. Language lateralization and handedness in women prenatally exposed to diethylstilbestrol (DES). Psychoneuroendocrinology. 2000;25:497512.CrossRefGoogle ScholarPubMed
90.Hines, M, Kaufman, FR. Androgen and the development of human sex-typical behavior: rough-and-tumble play and sex of preferred playmates in children with congenital adrenal hyperplasia (CAH). Child Dev. 1994;65:10421053.CrossRefGoogle ScholarPubMed
91.Berenbaum, SA, Hines, M. Early androgens are related to childhood sex-typed toy preferences. Psychol Sci. 1992;3:203206.CrossRefGoogle Scholar
92.Berenbaum, SA, Resnick, SM. Early androgen effects on aggression in children and adults with congenital adrenal hyperplasia. Psychoneuroendocrinology. 1997;22:505515.CrossRefGoogle ScholarPubMed
93.Resnick, SM, Berenbaum, SA, Gottesman, II, et al.Early hormonal influences on cognitive functioning in congenital adrenal hyperplasia. Dev Psychol. 1986;22:191198.CrossRefGoogle Scholar
94.Hampson, E, Rovet, JF, Altmann, D. Spatial reasoning in children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Dev Neuropsychol. 1998;14:299320.CrossRefGoogle Scholar
95.Berenbaum, SA. Effects of early androgens on sex-typed activities and interests in adolescents with congenital adrenal hyperplasia. Horm Behav. 1999;35:102110.CrossRefGoogle ScholarPubMed
96.Diamond, M, Sigmundson, HK. Sex reassignment at birth: long-term review and clinical implications [see comments]. Arch Pediatr Adolesc Med. 1997;151:298304.CrossRefGoogle ScholarPubMed
97.McClintock, MK, Herdt, G. Rethinking puberty: the development of sexual attraction. Curr Dir Psychol Sci. 1996;5:178183.CrossRefGoogle Scholar
98.Knoth, R, Boyd, K, Singer, G. Empirical tests of sexual selection theory: predictions of sex differences in onset, intensity and time course of sexual arousal. J Sex Res. 1988;24:7389.CrossRefGoogle ScholarPubMed
99.Baldwin, JD, Baldwin, JI. Gender differences in sexual interest. Arch Sex Behav. 1997;26:181210.CrossRefGoogle ScholarPubMed
100.Archer, J. The influence of testosterone on human aggression. Br J Psychol. 1991;82:128.CrossRefGoogle ScholarPubMed
101.Kimura, D, Hampson, E. Cognitive pattern in men and women is influenced by fluctuations in sex hormones. Curr Dir Psychol Sci. 1994;3:5761.CrossRefGoogle Scholar
102.Altemus, M, Wexler, BE, Boulis, N. Changes in perceptual asymmetry with the menstrual cycle. Neuropsychologia. 1989;27:233240.CrossRefGoogle ScholarPubMed
103.Heister, G, Landis, T, Regard, M, et al.Shift of functional cerebral asymmetry during the menstrual cycle. Neuropsychologia. 1989;27:871880.CrossRefGoogle ScholarPubMed
104.Alexander, GM, Sherwin, BB, Bancroft, J, et al.Testosterone and sexual behavior in oral contraceptive users and nonusers: a prospective study. Horm Behav. 1990;24:388402.CrossRefGoogle ScholarPubMed
105.Matteo, S, Rissman, EF. Increased sexual activity during the midcycle portion of the human menstrual cycle. Horm Behav. 1984;18:249255.CrossRefGoogle ScholarPubMed
106.Bancroft, J. The menstrual cycle and the well-being of women. Soc Sci Med. 1995;41:785791.CrossRefGoogle ScholarPubMed
107.Graham, C, Bancroft, J. Women, mood and the menstrual cycle. In: Niven, CA, Carroll, D, eds. The Health Psychology of Women. Langhorne, Penn: Harwood Academic Publishers/Gordon and Breach Science Publishers; 1993:1325.Google Scholar
108.Hampson, E. Variations in sex-related cognitive abilities across the menstrual cycle. Brain Cogn. 1990;14:2643.CrossRefGoogle ScholarPubMed
109.Hampson, E. Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology. 1990;15:97111.CrossRefGoogle ScholarPubMed
110.Wang, C, Alexander, G, Berman, N, et al.Testosterone replacement therapy improves mood in hypogonadal men—a clinical research center study. J Clin Endocrinol Metab. 1996;81:35783583.Google ScholarPubMed
111.Burris, AS, Banks, SM, Carter, CS, et al.A long-term, prospective study of the physiologic and behavioral effects of hormone replacement in untreated hypgonadal men. J Androl. 1992;13:297304.CrossRefGoogle Scholar
112.Alexander, GM, Swerdloff, RS, Wang, C, et al.Androgen-behavior correlations in hypogonadal men and eugonadal men. I. Mood and response to auditory sexual stimuli. Horm Behav. 1997;31:110119.CrossRefGoogle ScholarPubMed
113.Alexander, GM, Swerdloff, RS, Wang, C, et al.Androgen-behavior correlations in hypogonadal men and eugonadal men. II. Cognitive abilities. Horm Behav. 1998;33:8594.CrossRefGoogle ScholarPubMed
114.O'Carroll, R, Shapiro, C, Bancroft, J. Androgens, behaviour and nocturnal erection in hypogonadal men: the effects of varying the replacement dose. Clin Endocrinol. 1985;23:527538.CrossRefGoogle ScholarPubMed
115.Bancroft, J, Wu, FC. Changes in erectile responsiveness during androgen replacement therapy. Arch Sex Behav. 1983;12:5966.CrossRefGoogle ScholarPubMed
116.Skakkebaek, NE, Bancroft, J, Davidson, DW, et al.Androgen replacement with oral testosterone undecanoate in hypogonadal men: a double blind controlled study. Clin Endocrinol. 1981;14:4961.CrossRefGoogle Scholar
117.Davidson, JM, Camargo, CA, Smith, ER. Effects of androgen on sexual behavior in hypogonadal men. J Clin Endocrinol Metab. 1979;48:955958.CrossRefGoogle ScholarPubMed
118.Alexander, GM, Sherwin, BB. Sex steroids, sexual behavior, and selection attention for erotic stimuli in women using oral contraceptives. Psychoneuroendocrinology. 1993;18:91102.CrossRefGoogle ScholarPubMed
119.Sherwin, BB, Gelfand, MM, Brender, W. Androgen enhances sexual motivation in females: a prospective, cross-over study of sex steroid administration in the surgical menopause. Psychosom Med. 1985;47:339351.CrossRefGoogle Scholar
120.Everitt, BJ, Bancroft, J. Of rats and men: the comparative approach to male sexuality. Annu Rev Sex Res. 1991;2:77117.Google Scholar
121.Everitt, BJ. Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci Biobehav Rev. 1990;14:217232.CrossRefGoogle ScholarPubMed
122.LeVay, S. A difference in hypothalamic structure between heterosexual and homosexual men. Science. 1991;253:10341037.CrossRefGoogle ScholarPubMed
123.Speck, O, Ernst, T, Braun, J, et al.Gender differences in the functional organization of the brain for working memory. Neuroreport. 2000;11:25812585.CrossRefGoogle ScholarPubMed
124.Vanderschuren, LJMJ, Niesink, RJM, VanRee, JM. The neurobiology of social play behavior in rats. Neurosci Biobehav Rev. 1997;21:309326.CrossRefGoogle ScholarPubMed
125.Hull, EM, Du, J, Lorrain, DS, et al.Extracellular dopamine in the medial preoptic area: implications for sexual motivation and hormonal control of copulation. J Neurosci. 1995;15:74657471.CrossRefGoogle ScholarPubMed
126.Weinstock, M. Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis? Neurosci Biobehav Rev. 1997;21:110.CrossRefGoogle ScholarPubMed
127.Koehl, M, Carnaudery, M, Dulluc, J, et al.Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender. J Neurobiol. 1999;40:302315.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
128.Allen, NB, Lewinsohn, PM, Seeley, JR. Prenatal and perinatal influences on risk for psychopathology in childhood and adolescence. Dev Psychopathol. 1998;10:513529.CrossRefGoogle ScholarPubMed
129.Ward, IL, Stehm, KE. Prenatal stress feminizes juvenile play patterns in male rats. Physiol Behav. 1991;50:601605.CrossRefGoogle Scholar
130.Ward, IL. The prenatal stress syndrome: current status. Psychoneuroendocrinology. 1984;9:311.CrossRefGoogle ScholarPubMed
131.Anderson, DK, Rhees, RW, Fleming, DE. Effects of prenatal stress on differentiation of the sexually dimorphic nucleus of the preoptic area (SDN-POA) of the rat brain. Brain Res. 1985;332:113118.CrossRefGoogle ScholarPubMed
132.Bailey, JM, Willerman, L, Parks, C. A test of the maternal stress theory of human male homosexuality. Arch Sex Behav. 1991;20:277293.CrossRefGoogle ScholarPubMed
133.McCormick, CM, Witelson, SF, Kingstone, E. Left-handedness in homosexual men and women: neuroendocrine implications. Psychoneuroendocrinology. 1990;15:6976.CrossRefGoogle ScholarPubMed
134.Peterson, BS, Leckman, JF, Scahill, L, et al.Steroid hormones and CNS sexual dimorphisms modulate symptom expression in Tourette's syndrome. Psychoneuroendocrinology. 1992;17:553563.CrossRefGoogle ScholarPubMed
135.Peterson, BS, Leckman, JF, Cohen, DJ. Tourette's syndrome: a genetically predisposed and an environmentally specified developmental psychopathology. In: Cicchetti, D, Cohen, DJ, eds. Developmental Psychopathology. New York, NY: John Wiley & Sons; 1995:213242.Google Scholar
136.Burd, L, Kerbeshian, J, Wikenheiser, M, Fisher, W. A prevalence study of Gilles de la Tourette syndrome in North Dakota school-age children. J Am Acad Child Psychiatry. 1986;25:552553.CrossRefGoogle ScholarPubMed
137.Burd, L, Kerbeshian, J, Wikenheiser, M, et al.Prevalence of Gilles de la Tourette's syndrome in North Dakota adults. Am J Psychiatry. 1986;143:787788.Google ScholarPubMed
138.Peterson, BS, Riddle, MA, Cohen, DJ, et al.Reduced basal ganglia volumes in Tourette's syndrome using three-dimensional reconstruction techniques from magnetic resonance images. Neurology. 1993;43:941949.CrossRefGoogle ScholarPubMed
139.Peterson, BS, Leckman, JF, Duncan, JS, et al.Corpus callosum morphology from magnetic resonance images in Tourette's syndrome. Psychiatry Res Neuroimag. 1994;55:8599.CrossRefGoogle ScholarPubMed
140.Singer, HS, Reiss, AL, Brown, JE, et al.Volumetric MRI changes in basal ganglia of children with Tourette's syndrome. Neurology. 1993;43:950956.CrossRefGoogle ScholarPubMed
141.Peterson, BS, Staib, L, Scahill, L, et al.Regional brain and ventricular volumes in Tourette syndrome. Arch Gen Psychiatry. In press.Google Scholar
142.Cooke, BM, Tabibnia, G, Breedlove, SM. A brain sexual dimorphism controlled by adult circulating androgens. Proc Natl Acad Sci USA. 1999;96:75387540.CrossRefGoogle ScholarPubMed
143.Schneider, F, Habel, U, Kessler, C, et al.Gender differences in regional cerebral activity during sadness. Hum Brain Mapp. 2000;9:226238.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
144.Taylor, E. Clinical foundation of hyperactivity research. Behav Brain Res. 1998;94:1124.CrossRefGoogle ScholarPubMed
145.Castellanos, FX, Giedd, JN, Eckburg, P, et al.Quantitative morphology of the caudate nucleus in attention deficit hyperactivity disorder. Am J Psychiatry. 1994;151:17911796.Google ScholarPubMed
146.King, JA, Barkley, RA, Delville, Y, et al.Early androgen treatment decreases cognitive function and catecholamine innervation in an animal model of ADHD. Behav Brain Res. 2000;107:3543.CrossRefGoogle Scholar
147.Williams, TJ, Pepitone, ME, Christensen, SE, et al.Finger-length ratios and sexual orientation. Nature. 2000;404:455456.CrossRefGoogle ScholarPubMed
148.McFadden, D, Champlin, CA. Comparison of auditory evoked potentials in heterosexual, homosexual, and bisexual males and females. J Assoc Res Otolaryngol. 2000;1:8999.CrossRefGoogle ScholarPubMed
149.Peterson, BS, Cohen, DJ. The treatment of Tourette's syndrome: a multimodal developmental intervention. J Clin Psychiatry. 1998;59(suppl 1):6272.Google ScholarPubMed
150.Leckman, JF, Scahill, L. Possible exacerbation of tics by androgenic steroids [letter]. N Engl J Med. 1990;322:1674.Google ScholarPubMed
151.Peterson, BS, Leckman, JF, Scahill, L, et al.Steroid hormones and Tourette's syndrome: early experience with antiandrogen therapy. J Clin Psychopharmacol. 1994;14:131135.CrossRefGoogle ScholarPubMed
152.Altemus, M, Greenberg, BD, Keuler, D, et al.Open trial of flutamide for treatment of obsessive-compulsive disorder. J Clin Psychiatry. 1999;60:442445.CrossRefGoogle ScholarPubMed
153.Cohen, RS, Seeman, MV, Gotowiec, A, et al.Earlier puberty as a predictor of later onset of schizophrenia in women. Am J Psychiatry. 1999;156:10591064.CrossRefGoogle ScholarPubMed
154.Janowsky, DS, Halbreich, U, Rausch, J. Association among ovarian hormones, other hormones, emotional disorders, and neuro-transmitters. In: Jensvold, MF, Halbreich, U, Hamilton, JA, eds. Psychopharmacology and Women: Sex, Gender, and Hormones. Washington, DC: American Psychiatric Press; 1996:85106.Google Scholar
155.Epperson, CN, Wisner, KL, Yamamoto, B. Gonadal steroids in the treatment of mood disorders. Psychosom Med. 1999;61:676697.CrossRefGoogle ScholarPubMed
156.Anderson, RA, Bancroft, J, Wu, FC. The effects of exogenous testosterone on sexuality and mood of normal men. J Clin Endocrinol Metab. 1992;75:15031507.Google ScholarPubMed
157.Pope, HG, Katz, DL. Psychiatric and medical effects of anabolic-androgenic steroid use. Arch Gen Psychiatry. 1988;51:375382.CrossRefGoogle Scholar
158.Hamilton, JA. Postpartum psychiatric syndromes. Psychiatr Clin North Am. 1989;12:89103.CrossRefGoogle ScholarPubMed
159.Varney, NR, Syrop, C, Kubu, CS, et al.Neuropsychologic dysfunction in women following leuprolide acetate induction of hypoestrogenism. J Assist Reprod Genet. 1993;10:5357.CrossRefGoogle ScholarPubMed
160.Casas, M, Alvarez, E, Duro, P, et al.Antiandrogenic treatment of obsessive-compulsive neurosis. Acta Psychiatr Scand. 1986;73:221222.CrossRefGoogle ScholarPubMed
161.Peterson, BS, Zhang, Z, Anderson, GA, et al.A double-blind, placebo-controlled, crossover trial of an antiandrogen in the treatment of Tourette's syndrome. J Clin Psychopharmacol. 1998;18:324331.CrossRefGoogle ScholarPubMed
162.Rubinow, DR, Schmidt, PJ. Androgens, brain, and behavior. Am J Psychiatry. 1996;153:974984.Google ScholarPubMed
163.Rochford, J, Chatigny, S. Male rats classified as copulators and noncopulators respond differentially on the plate test. Physiol Behav. 1993;53:409411.CrossRefGoogle ScholarPubMed
164.King, BE, Alexander, GM. Pain sensitivity and individual differences in self-reported sexual behavior. J Comp Psychol. 2000;114:193199.CrossRefGoogle ScholarPubMed
165.Moffat, SD, Hampson, E. Salivary testosterone concentrations in left-handers: an association with cerebral language lateralization. Neuropsychology. 2000;14:7181.CrossRefGoogle ScholarPubMed
166.Moffat, SD, Hampson, E, Lee, DH. Morphology of the planum temporale and corpus callosum in left handers with evidence of left and right hemisphere speech representation. Brain. 1998;121:23692379.CrossRefGoogle ScholarPubMed
167.Moffat, SD, Hampson, E. A curvilinear relationship between testosterone and spatial cognition in humans: possible influence of hand preference. Psychoneuroendocrinology. 1996;21:323337.CrossRefGoogle ScholarPubMed
168.Moffat, SD, Hampson, E. Salivary testosterone levels in left- and right-handed adults. Neuropsychologia. 1996;34:225233.CrossRefGoogle ScholarPubMed
169.Kinsey, AC, Pomeroy, WB, Martin, CE. Sexual Behavior in the Human Male. Philadelphia, Penn: WB Saunders; 1948.Google Scholar