Article contents
Rhythmic low-field magnetic stimulation may improve depression by increasing brain-derived neurotrophic factor
Published online by Cambridge University Press: 20 February 2018
Abstract
Low-field magnetic stimulation (LFMS) has mood-elevating effect, and the increase of brain-derived neurotrophic factor (BDNF) is associated with antidepressant treatment. We evaluated the effects and association with BDNF of rhythmic LFMS in the treatment of major depressive disorder (MDD).
A total of 22 MDD patients were randomized to rhythmic alpha stimulation (RAS) or rhythmic delta stimulation (RDS), with 5 sessions per week, lasting for 6 weeks. Outcomes assessments included the 17-item Hamilton Depression Rating Scale (HAMD–17), the Hamilton Anxiety Rating Scale (HAMA), and the Clinical Global Impressions–Severity scale (CGI–S) at baseline and at weeks 1, 2, 3, 4, and 6. Serum BDNF level was measured at baseline and at weeks 2, 4, and 6.
HAMD–17, HAMA, and CGI–S scores were significantly reduced with both RAS and RDS. RAS patients had numerically greater reductions in HAMD–17 scores than RDS patients (8.9 ± 7.4 vs. 6.2 ± 6.2, effect size [ES]=0.40), while RDS patients had greater improvement in HAMA scores (8.2 ± 8.0 vs. 5.3 ± 5.8, ES=0.42). RAS was associated with clinically relevant advantages in response (54.5% vs. 18.2%, number-needed-to-treat [NNT]=3) and remission (36.4% vs. 9.1%, NNT=4). BDNF increased significantly during the 6-week study period (p<0.05), with greater increases in RAS at weeks 4 and 6 (ES=0.66—0.76) and statistical superiority at week 2 (p=0.034, ES=1.23). Baseline BDNF in the 8 responders (24.8±9.0 ng/ml) was lower than in the 14 nonresponders (31.1±7.3 ng/ml, p=0.083, ES=–0.79), and BDNF increased more in responders (8.9±7.8 ng/ml) than in nonresponders (1.8±3.5 ng/ml, p=0.044). The change in BDNF at week 2 was the most strongly predicted response (p=0.016).
Rhythmic LFMS was effective for MDD. BDNF may moderate/mediate the efficacy of LFMS.
Keywords
- Type
- Original Research
- Information
- Copyright
- © Cambridge University Press 2018
Footnotes
This study was funded by the Beijing Municipal Administration of Hospitals, Clinical Medicine Development of Special Funding Support no. ZYLX201403; by the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support no ZYLX201607; by the Beijing Municipal Administration of Hospitals Incubating Program, Code no. PX2017048; by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China grant no. 2015BAI13B03; and by the Beijing Municipal Administration of Hospitals’ Ascent Plan, Code no. DFL20151801.
References
REFERENCES
- 14
- Cited by