Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-18T19:57:51.424Z Has data issue: false hasContentIssue false

Psychopharmacology of Depression in the Next Millennium

Published online by Cambridge University Press:  07 November 2014

Abstract

Over the last half of the 20th century, there have been a series of psychopharmacologic strategies for treatment of depression. As we approach the next century, new therapies in varying stages of American release are being developed. This review will focus on information available for the following proposed antidepressants: 1) reboxetine, a norepinephrine selective reuptake inhibitor; 2) milnacipran, a combined serotonin/norepinephrine reuptake inhibitor; 3) a new enantiomer of fluoxetine, a selective serotonin reuptake inhibitor; 4) duloxetine, another combined serotonin/norepinephrine reuptake inhibitor; 5) sunepitron, a combined 5-HT1A agonist and α2 antagonist; and, 6) MK-869, a substance P inhibitor. Finally, other possible developing directions will be reviewed, including corticotropin-releasing factor.

Type
Feature Articles
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kline, NS. Monoamine oxidase inhibitors: an unfinished picaresque tale. In: Ayd, FJ, Blackwell, B. Discoveries in Biological Psychiatry. Philadelphia and Toronto: JB Lippincott Company; 1970:194204.Google Scholar
2.Dostert, P, Benedetti, MS, Poggesi, I. Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor. Eur Neuropsychopharmacol. 1997;7(suppl 1): 23S35S.CrossRefGoogle ScholarPubMed
3.Melloni, P, Carniel, G, Della Toree, A, et al.Potential antidepressant agents, a-Aryloxy-benzyl derivatives of ethanolamine and morpholine. Eur J Med Chem Chim Ther. 1984;19:235242.Google Scholar
4.Riva, M, Brunello, N, Rovescalli, AC, et al.Effect of reboxetine, a new antidepressant drug, on the central noradrenergic system: behavioural and biochemical studies. J Drug Dev. 1989;1:243253.Google Scholar
5.Strolin Benedetti, M, Frigerio, E, et al.Stereoselective and species-dependent kinetics of reboxetine in mouse and rat. Chirality. 1995;7:285289.Google ScholarPubMed
6.Strolin Benedetti, M, Pellizzoni, C, Poggesi, I, et al. Pharmacokinetics of reboxetine enantiomers in healthy volunteers. Presented at the 12th International Congress of Pharamcology, Montreal, Quebec, Canada, July 24–29, 1994. Abstract No. 13.21.17.Google Scholar
7.Edwards, DMF, Pellizzoni, C, Breuel, A, Castellli, MG, Frigerio, E, Poggesi, I. Pharmacokinetics of reboxetine in healthy volunteers: single oral doses, linearity, and plasma protein binding. Biopharm Drug Dispos. 1995;16:443460.Google ScholarPubMed
8.Rey, E, Dostert, P, D'Athis, P, Jannuzzo, MG, Poggesi, I, Olive, G. Dose proportionality of reboxetine enantiomers in healthy male volunteers. Presented at the Sixth World Conference on Clinical Pharmacology and Therapeutics, Buenos Aires, August 4–9, 1996.Google Scholar
9.Pellizzoni, C, Strolin Benedetti, M, Poggesi, I, Frigerio, E, Toon, S, Langley, SJ. Pharmacokinetics of reboxetine in healthy volunteers: relative bioavailability and food effect. Pharmacol Res. 1995;31(suppl):41.CrossRefGoogle Scholar
10.Pellizzoni, C, Poggesi, I, Jorgansen, NP, Edwards, DMF, Paus, E, Strolin Benedetti, M. Pharmacokinetics of reboxetine in healthy volunteers: single versus repeated oral doses and lack of enzymatic alterations. Biopharm Drug Dispos. 1996;17:623633.Google Scholar
11.Jannuzzo, MG, Strolin Benedetti, M, Duchene, P, Dubini, A, Dostert, P. Pharmacokinetics of reboxetine in the elderly. Presented at the Second International Symposium Measurement and Kinetics of In Vivo Drug Effects, 1994. Book of Abstracts, pp.9496.Google Scholar
12.Fleishaker, JC, Wong, EHF. Pharmacokinetics of reboxetine in elderly volunteers and depressed patients. Presented at the European Collegium of Neuropsychopharmacologicum, 1998. Abstracts, #60.Google Scholar
13.Fiorentini, F, Poggesi, I, Januzzo, MG, Duchene, P, Strolin Benedetti, M. Pharmacokinetics of reboxetine, a new selective noradrenaline uptake inhibitor, in paients with various degrees of hepatic and renal insufficiency. Pharmacol Res. In press.Google Scholar
14.Burrows, GD, Maguire, KP, Norman, TR. Antidepressant efficacy and tolerability of the selective norepinephrine reuptake inhibitor reboxetine: a review. J Clin Psychiatry. 1998;59(suppl 14):47.Google ScholarPubMed
15.Berzewski, H, Van Moffaert, M, Gagiano, CA. Efficacy and tolerability of reboxetine compared with imipramine in a double-blind study in patients suffering from major depressive episodes. Eur Neuropsychopharmacol. 1997;7(suppl 1):37S47S.CrossRefGoogle Scholar
16.Massana, J, Katona, C. Reboxetine is as effective and better tolerated than imipramine in elderly patients with depression. Presented at the European Collegicum Neuropsychopharmacologicum, 1998. Abstract 56.Google Scholar
17.Massana, J. Reboxetine versus fluoxetine: an overview of efficacy and tolerability. J Clin Psychiatry. 1998;59(suppl 14):810.Google ScholarPubMed
18.Versiani, M. Overall efficacy and tolerability of reboxetine I comparative clinical trials of 2613 patients with depressive illness. Presented at the European Collegicum Neuropsychopharmacologicum, 1998. Abstract 58.Google Scholar
19.Briley, M, Prost, JF, Moret, C. Preclinical pharmacology of milnacipran. Int Clin Psychopharmacol. 1996;11(suppl 4):1014.CrossRefGoogle ScholarPubMed
20.Puozzo, C, Leonard, BE. Pharmacokinetics of milnacipran in comparison with other antidepressants. Int Clin Psychopharmacol. 1996;11(suppl 4):1527.CrossRefGoogle ScholarPubMed
21.Lecrubier, Y, Pletan, Y, Solles, A, Tournoux, A, Magne, V. Clinical efficacy of milnacipran: placebo-controlled trials. Int Clin Psychopharmacol. 1996;11(suppl 4):2933.CrossRefGoogle ScholarPubMed
22.Kasper, S, Pletan, Y, Solles, A, Tournoux, A. Comparative studies with milnacipran and tricyclic antidepressants in the treatment of patients with major depression: a summary of clinical trial results. Int Clin Psychopharmacol. 1996;11(suppl 4):335339.CrossRefGoogle ScholarPubMed
23.Leinonen, E, Lepola, U, Koponen, H, Mehtonen, OP, Rimon, R. Long-term efficacy and safety of milnacipran compared to clomipramine in patients with major depression. Acta Psychiatrica Scand. 1997;96:497504.CrossRefGoogle ScholarPubMed
24.Steen, A, Den Boer, JA. A double-blind six months comparative study of milnacipran and clomipramine in major depressive disorder. Int Clin Psychopharmacol. 1997;12:269281.CrossRefGoogle ScholarPubMed
25.Tignol, J, Pujol-Domenech, J, Chartres, JP, et al.Double-blind study of the efficacy and safety of milnacipran and imipramine in elderly patients with major depressive episode. Acta Psychiatrica Scand. 1998;97:157165.CrossRefGoogle ScholarPubMed
26.Lopez-Ibor, J, Guelfi, JD, Pletan, Y, Tournoux, A, Prost, JF. Milnacipran and selective serotonin reuptake inhibitors in major depression. Int Clin Psychopharmacol. 1996;11(suppl 4):4146.CrossRefGoogle ScholarPubMed
27.Wong, DT, Threikeld, BS, Robertson, DW. Affinities of fluoxetine, its enantiomers, and other inhibitors of serotonin uptake for subtypes of serotonin receptors. Neuropsychopharmacol. 1991;5:4347.Google ScholarPubMed
28.Wong, DT, Bymaster, FP, Reid, LR, Mayle, DA, Krushinski, JH, Robertson, DW. Norfluoxetine enantiomers as inhibitors of serotonin uptake in rat brain. Neuropsychopharmacol. 1993;8:337344.CrossRefGoogle ScholarPubMed
29.Stevens, JC, Wrighton, SA. Interaction of the enantiomers of fluoxetine and norfluoxetine with human liver cytochromes P450. J Pharmacol Exp Ther. 1993;266:964971.Google ScholarPubMed
30.Artigas, F. Selective serotonin/noradrenaline reuptake inhibitors (SNRIs). CNS Drugs. 1995;4:7989.CrossRefGoogle Scholar
31.Jackson, HC, Needham, AM, Hutchins, LJ, Mazurkiewicz, SE, Heal, DJ. Comparison of the effects of sibutramine and other monoamine reuptake inhibitors on food intake in the rat. Br J Pharmacol. 1997;121:17581762.Google ScholarPubMed
32.Smith, JE, Lakoski, JM. Electrophysiological study of the effects of the reuptake inhibitor duloxetine on serotonergic responses in the aging hippocampus. Pharmacology. 1997;55:6677.Google ScholarPubMed
33.Rueter, LE, Kasamo, K, de Montigny, C, Blier, P. Effects of long-term administration of duloxetine on the function of serotonin and noradrenaline terminals in rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1998;357: 600610.CrossRefGoogle ScholarPubMed
34.Thompson, RG, Heiligenstein, JH, Birkett, MA. Dual serotonin and norepinephrine uptake inhibitors: clinical results in major depression. Abstract. Neuropsychopharmacol. 1994;10(suppl 3, pt 1):652S.Google Scholar
35.Lilly Research Laboratories, 1994. Duloxetine Hcl (LY248686), Clinical Investigator Brochure.Google Scholar
36.Schmidt, AW, Fox, CB, Lazzaro, J, et al.CP-93,393, a novel anxiolytic/antidepressant agent with both 5-HT1A agonist and alpha-2 adrenergic antagonist properties: in vitro studies. Soc Neurosci Abst. 1995;21:2106.Google Scholar
37.Reynolds, LS, Braselton, JP, Sprouse, JS, et al.In vivo profile of CP-93,393: evidence of combined 5-HT1A agonist and alpha-2 antagonist activities. Soc Neurosci Abst. 1995;21:2106.Google Scholar
38.Lu, Y, Clarke, T, Schmidt, AW, Rollema, H. Comparison of the effects of CP-93393 and buspirone on NE and 5-HT release: microdialysis studies in hippocampus of freely moving rats and guinea pigs. Soc Neurosci Abst. 1996;22:236.Google Scholar
39.Seymour, PA, Desai, K, Bright, GM. Enhanced efficacy via combined 5-HT1A agonist and alpha-2 adrenergic antagonist activities. Soc Neurosci Abst. 1995;21:2106.Google Scholar
40.Barden, N, Daigle, M, Picard, V, Di Paolo, J. Perturbation of rat brain serotonergic sytems results in an inverse relation between substance P and serotonin concentrations measured in descrete nuceli. J Neurochem. 1983;41:834840.CrossRefGoogle Scholar
41.Rimon, R, Le Greves, P, Nyberg, F, Heikkila, L, Salmela, L, Terenius, L. Elevation of substance P-like peptides in the CSF of psychiatric patients. Biol Psychiatry. 1983;19:509516.Google Scholar
42.Kramer, MS, Cutler, M, Feighner, J, et al.Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science. 1998;281:16401645.Google ScholarPubMed
43.Nemeroff, CB. Psychopharmacology of affective disorders in the 21st century. Biol Psychiatry. 1998;44:517525.Google Scholar
44.Nemeroff, CB, Widerlov, E, Bisssette, G, Walleus, H, Karlsson, I, Eklund, K. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science. 1984;226:13421344.CrossRefGoogle ScholarPubMed
45.Nemeroff, CB, Knight, DL, Krishnan, KRR, et al.Marked reduction in the number of platelet 3H-imipramine binding sites in geriatric depression. Arch Gen Psychiatry. 1988;45:919923.Google Scholar
46.Raadsheer, FC, van Heerikhuize, JJ, Lucassen, PJ. Corticotropin-releasing hormone (CRH) mRNA in paraventricular nucleus of patients with Alzheimer's disease or depression. Am J Psychiatry. 1995;152: 13721376.Google ScholarPubMed
47.Nestler, EJ. Antidepressant treatments in the 21st century. Biol Psychiatry. 1998;44:526533.CrossRefGoogle Scholar
48.Duman, RS, Heninger, GR, Nestler, EJ. A molecular and cellular hypothesis of depression. Arch Gen Psychiatry. 1997;54:597606.CrossRefGoogle ScholarPubMed
49.Richelson, E, Pfenning, M. Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: most antidepressants selectively block norepinephrine uptake. Eur J Pharmacol. 1984;104:277286.CrossRefGoogle ScholarPubMed
50.Richelson, E, Nelson, A. Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro. J Pharmacol Exp Ther. 1984;230:94102.Google ScholarPubMed