Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T08:38:01.223Z Has data issue: false hasContentIssue false

A Psychobiological Rationale for Oxytocin in the Treatment of Posttraumatic Stress Disorder

Published online by Cambridge University Press:  07 November 2014

Abstract

Although cognitive-behavioral therapy (CBT) is an effective treatment for posttraumatic stress disorder (PTSD), many patients fail to attain remission with CBT. The authors propose augmentation of CBT with oxytocin in the treatment of PTSD. Oxytocin has a combination of pharmacologic effects that result in a “sense of safety” for the patient, which is a prerequisite to successful treatment of PTSD. We suggest a dual explanatory mechanism as to why oxytocin may be effective: through a reduction of fear response (decreasing amygdala activation, inhibiting fear response, and enhancing extinction learning) and through an increase of social interaction (activating social reward-related brain regions increasing engagement in the therapeutic alliance). Given that PTSD is marked by deficits in anxiety/stress regulation and in social functioning, and that oxytocin is implicated in both of these areas, oxytocin seems a likely candidate for treatment of patients with PTSD. Further clinical studies of the therapeutic value of oxytocin are indicated.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kessler, RC, Sonnega, A, Bromet, E, Hughes, M, Nelson, CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995; 52(12): 10481060.CrossRefGoogle ScholarPubMed
2.de Vries, GJ, Olff, M. The lifetime prevalence of traumatic events and posttraumatic stress disorder in the Netherlands. J Trauma Stress. 2009; 22(4): 259267.CrossRefGoogle ScholarPubMed
3.Olff, M, Langeland, W, Draijer, N, Gersons, BP. Gender differences in posttraumatic stress disorder. Psychol Bull. 2007; 133(2): 183204.CrossRefGoogle ScholarPubMed
4.Bradley, R, Greene, J, Russ, E, Dutra, L, Westen, D. A multidimensional meta-analysis of psychotherapy for PTSD. Am J Psychiatry. 2005; 162(2): 214227.CrossRefGoogle ScholarPubMed
5.Bisson, JI, Ehlers, A, Matthews, R, Pilling, S, Richards, D, Turner, S. Psychological treatments for chronic post-traumatic stress disorder. Systematic review and meta-analysis. Br J Psychiatry. 2007; 190: 97104.CrossRefGoogle ScholarPubMed
6.Mendes, DD, Mello, MF, Ventura, P, Passarela, CM, Mari, JJ. A systematic review on the effectiveness of cognitive behavioral therapy for posttraumatic stress disorder. Int J Psychiatry Med. 2008; 38(3): 241259.CrossRefGoogle ScholarPubMed
7.Cloitre, M. Effective psychotherapies for posttraumatic stress disorder: a review and critique. CNS Spectr. 2009; 14 (1 Suppl 1): 3243.Google ScholarPubMed
8.Roberts, NP, Kitchiner, NJ, Kenardy, J, Bisson, JI. Systematic review and meta-analysis of multiple-session early interventions following traumatic events. Am J Psychiatry. 2009; 166(3): 293301.CrossRefGoogle ScholarPubMed
9.Foa, EB, Zoellner, LA, Feeny, NC, Hembree, EA, varez-Conrad J. Does imaginal exposure exacerbate PTSD symptoms? J Consult Clin Psychol. 2002; 70(4): 10221028.CrossRefGoogle ScholarPubMed
10.Devilly, GJ, Huther, A. Perceived distress and endorsement for cognitive- or exposure- based treatments following trauma. Aust Psychologist. 2008; 43(1): 714.CrossRefGoogle Scholar
11.Davis, M, Ressler, K, Rothbaum, BO, Richardson, R. Effects of D-cycloserine on extinction: translation from preclinical to clinical work. Biol Psychiatry. 2006; 60(4): 369375.CrossRefGoogle ScholarPubMed
12.Richardson, R, Ledgerwood, L, Cranney, J. Facilitation of fear extinction by D-cycloserine: theoretical and clinical implications. Learn Mem. 2004; 11(5): 510516.CrossRefGoogle ScholarPubMed
13.McNally, RJ. Mechanisms of exposure therapy: how neuroscience can improve psychological treatments for anxiety disorders. Clin Psychol Rev. 2007; 27(6): 750759.CrossRefGoogle ScholarPubMed
14.Norberg, MM, Krystal, JH, Tolin, DF. A meta-analysis of D-cycloserine and the facilitation of fear extinction and exposure therapy. Biol Psychiatry. 2008; 63(12): 11181126.CrossRefGoogle ScholarPubMed
15.Stein, DJ, Ipser, J, McAnda, N. Pharmacotherapy of posttraumatic stress disorder: a review of meta-analyses and treatment guidelines. CNS Spectr. 2009; 14 (1 Suppl 1): 2531.Google ScholarPubMed
16.Bartz, JA, Hollander, E. The neuroscience of affiliation: forging links between basic and clinical research on neuropeptides and social behavior. Horm Behav. 2006; 50(4): 518528.CrossRefGoogle ScholarPubMed
17.Marazziti, D, Dell'osso, MC. The role of oxytocin in neuropsychiatric disorders. Curr Med Chem. 2008; 15(7): 698704.CrossRefGoogle ScholarPubMed
18.Heinrichs, M, von Dawans, B, Domes, G. Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol. 2009; 30: 548557.CrossRefGoogle ScholarPubMed
19.Meyer-Lindenberg, A. Impact of prosocial neuropeptides on human brain function. Prog Brain Res. 2008; 170: 463470.CrossRefGoogle ScholarPubMed
20.Norris, FH, Kaniasty, K. Received and perceived social support in times of stress: a test of the social support deterioration deterrence model. J Pers Soc Psychol. 1996; 71(3): 498511.CrossRefGoogle Scholar
21.Johansen, P, Krebs, T. How could MDMA (ecstasy) help anxiety disorders? A neurobiological rationale. J Psychopharmacol. 2009; 23: 389391.CrossRefGoogle ScholarPubMed
22.Dumont, GJ, Sweep, FC, van der, SR, et al. Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3,4-methylenedioxymethamphetamine) administration. Soc Neurosci. 2009; 4(4): 359366.CrossRefGoogle ScholarPubMed
23.Myers, KM, Davis, M. Mechanisms of fear extinction. Mol Psychiatry. 2007; 12: 120150.CrossRefGoogle ScholarPubMed
24.Ibragimov, R. Influence of neurohypophyseal peptideson the formation of active avoidance conditioned reflex behavior. Neurosci Behav Physiol. 1990; 20: 189193.CrossRefGoogle Scholar
25.Uvnäs-Moberg, K. Oxytocin linked antistress effects: the relaxation and growth response. Acta Physiol Scand Suppl. 1997; 640: 3842.Google ScholarPubMed
26.Uvnäs-Moberg, K. Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinol. 1998; 23(8): 819835.CrossRefGoogle ScholarPubMed
27.Huber, D, Veinante, P, Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science. 2005; 308 (5719): 245248.CrossRefGoogle ScholarPubMed
28.Kirsch, P, Esslinger, C, Chen, Q et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci. 2005; 25(49): 1148911493.CrossRefGoogle ScholarPubMed
29.Phelps, EA, Delgado, MR, Nearing, KI, LeDoux, JE. Extinction learning in humans: role of the amygdala and vmPFC. Neuron. 2004; 43(6): 897905.CrossRefGoogle ScholarPubMed
30.Williams, LM, Kemp, AH, Felmingham, K, et al. Trauma modulates amygdala and medial prefrontal responses to consciously attended fear. Neuroimage. 2006; 29(2): 347357.CrossRefGoogle ScholarPubMed
31.Shin, LM, Rauch, SL, Pitman, RK. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci. 2006; 1071: 6779.Google Scholar
32.Liberzon, I, Sripada, CS. The functional neuroanatomy of PTSD: a critical review. Prog Brain Res. 2008; 167: 151169.CrossRefGoogle ScholarPubMed
33.Milad, MR, Rauch, SL, Pitman, RK, Quirk, GJ. Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol. 2006; 73(1): 6171.CrossRefGoogle ScholarPubMed
34.Bryant, RA, Felmingham, K, Kemp, A et al. Amygdala and ventral anterior cingulate activation predicts treatment response to cognitive behaviour therapy for post-traumatic stress disorder. Psychol Med. 2008; 38(4): 555561.CrossRefGoogle ScholarPubMed
35.Felmingham, K, Kemp, A, Williams, L et al. Changes in anterior cingulate and amygdala after cognitive behavior therapy of posttraumatic stress disorder. Psychol Sci. 2007; 18(2): 127129.CrossRefGoogle ScholarPubMed
36.Bohus, B, Kovacs, GL, de Wied, D. Oxytocin, vasopressin and memory: opposite effects on consolidation and retrieval processes. Brain Res. 1978; 157(2): 414417.CrossRefGoogle ScholarPubMed
37.Amico, JA, Robinson, AG. Oxytocin: Clinical and Laboratory Studies. New York, NY: Elsevier; 1985.Google Scholar
38.Amico, JA, Mantella, RC, Vollmer, RR, Li, X. Anxiety and stress responses in female oxytocin deficient mice. J Neuroendocrinol. 2004; 16(4): 319324.CrossRefGoogle ScholarPubMed
39.Gulpinar, MA, Yegen, BC. The physiology of learning and memory: role of peptides and stress. Curr Protein Pept Sci. 2004; 5(6): 457473.CrossRefGoogle ScholarPubMed
40.Bosch, OJ, Meddle, SL, Beiderbeck, DI, Douglas, AJ, Neumann, ID. Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci. 2005; 25(29): 68076815.CrossRefGoogle ScholarPubMed
41.Bale, TL, Davis, AM, Auger, AP, Dorsa, DM, McCarthy, MM. CNS region-specific oxytocin receptor expression: importance in regulation of anxiety and sex behavior. J Neurosci. 2001; 21(7): 25462552.CrossRefGoogle ScholarPubMed
42.Pare, D, Quirk, GJ, LeDoux, JE. New vistas on amygdala networks in conditioned fear. J Neurophysiol. 2004; 92(1): 19.CrossRefGoogle ScholarPubMed
43.Viviani, D, Stoop, R. Opposite effects of oxytocin and vasopressin on the emotional expression of the fear response. Prog Brain Res. 2008; 170: 207218.CrossRefGoogle ScholarPubMed
44.Debiec, J. Peptides of love and fear: vasopressin and oxytocin modulate the integration of information in the amygdala. Bioessays. 2005; 27(9): 869873.CrossRefGoogle ScholarPubMed
45.LeDoux, JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000; 23: 155184.CrossRefGoogle ScholarPubMed
46.Domes, G, Heinrichs, M, Glascher, J, Buchel, C, Braus, DF, Herpertz, SC. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry. 2007; 62(10): 11871190.CrossRefGoogle ScholarPubMed
47.Baumgartner, T, Heinrichs, M, Vonlanthen, A, Fischbacher, U, Fehr, E. Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron. 2008; 58(4): 639650.CrossRefGoogle ScholarPubMed
48.Petrovic, P, Kalisch, R, Singer, T, Dolan, RJ. Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J Neurosci. 2008; 28(26): 66076615.CrossRefGoogle ScholarPubMed
49.Singer, T, Snozzi, R, Bird, G, et al. Effects of oxytocin and prosocial behavior on brain responses to direct and vicariously experienced pain. Emotion. 2008; 8(6): 781791.CrossRefGoogle ScholarPubMed
50.Ressler, KJ, Rothbaum, BO, Tannenbaum, L, et al. Cognitive enhancers as adjuncts to psychotherapy: Use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch Gen Psychiatry. 2004; 61: 11361144.CrossRefGoogle ScholarPubMed
51.Hofmann, SG, Meuret, AE, Smits, JA, et al. Augmentation of exposure therapy for social anxiety disorder with D-Cycloserine. Arch Gen Psychiatry. 2006; 63: 298304.CrossRefGoogle ScholarPubMed
52.Bouso, JC, Doblin, R, Farré, M, Alcázar, MA, Gómez-Jarabo, G. MDMA-assisted psychotherapy using low doses in a small sample of women with chronic posttraumatic stress disorder. J Psychoactive Drugs. 2008; 40: 225236.CrossRefGoogle Scholar
53.Mithoefer, M, Mithoefer, A, Wagner, M. Methylenedioxymethamphetamine (MDMA)-assisted psychotherapy in subjects with chronic posttraumatic stress disorder: A Phase II clinical trial completed 19 September,2008. Poster presented at: 24th Annual Meeting of the International Society of Traumatic Stress Studies; Chicago, IL.Google Scholar
54.Greer, G, Tolbert, R. Subjective reports of the effects of MDMA in a clinical setting. J Psychoactive Drugs. 1986; 18: 319327.CrossRefGoogle ScholarPubMed
55.Dumont, GJH, Verkes, RJ. A review of acute effects of 3,4-methylenedioxymethamphetamine in healthy volunteers. J Psychopharmacol. 2006; 20: 176187.CrossRefGoogle ScholarPubMed
56.Kolbrich, EA, Goodwin, RS, Gorelick, DA, Hayes, RJ, Stein, EA, Huestis, MA. Physiological and subjective responses to controlled oral 3,4-methylenedioxymethamphetamine administration. J Clin Psychopharmacol. 2008; 28: 432440.CrossRefGoogle ScholarPubMed
57.Thompson, MR, Callaghan, PD, Hunt, GE, Cornish, JL, McGregor, IS. A role for oxytocin and 5-HT(1A) receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine (“ecstasy”). Neurosci. 2007; 146: 509514.CrossRefGoogle ScholarPubMed
58.Thompson, MR, Callaghan, PD, Hunt, GE, McGregor, IS. Reduced sensitivity to MDMA-influenced facilitation of social behaviour in MDMA-pre-exposed rats. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32: 10131021.CrossRefGoogle Scholar
59.van Ree, JM, Bohus, B, Versteeg, DH, de Wied, D. Neurohypophyseal principles and memory processes. Biochem Pharamcol. 1978; 27(14): 17931800.CrossRefGoogle ScholarPubMed
60.de Wied, D. Behavioural actions of neurohypophysial peptides. Proc R Soc Lond B Biol Sci. 1980; 210 (1178): 183195.Google ScholarPubMed
61.Heinrichs, M, Meinlschmidt, G, Wippich, W, Ehlert, U, Hellhammer, DH. Selective amnesic effects of oxytocin on human memory. Physiol Behav. 2004; 83: 3138.CrossRefGoogle ScholarPubMed
62.Ferrier, BM, Kennett, DJ, Devlin, MC. Influence of oxytocin on human memory process. Life Sci. 1980; 27(58): 23112317.CrossRefGoogle Scholar
63.Bruins, J, Hijman, R, van Ree, JM. Effect of a single dose of desglycinamide-[Arg8]vasopressin or oxytocin on cognitive process in young healthy subjects. Peptides. 1992; 13: 461468.CrossRefGoogle ScholarPubMed
64.Fehm-Wolfsdorf, G, Born, J, Voigt, KH, Fehm, HL. Human memory and neurohypophyseal hormones: opposite effects of vasopressin and oxytocin. Psychoneuroendocrinol. 1984; 9: 285292.CrossRefGoogle Scholar
65.Fehm-Wolfsdorf, G, Bachholz, G, Born, J, Voigt, K, Fehm, HL. Vasopressin but not oxytocin enhances cortical arousal: an integrative hypothesis on behavioural effects of neuro-hypophyseal hormones. Psychopharmacol. 1988; 94: 496500.CrossRefGoogle ScholarPubMed
66.Geenen, V, Adam, F, Baro, V, et al. Inhibitory influence of oxytocin infusion on contingent negative variation and some memory tasks in normal men. Psychoneuroendocrinol. 1988; 13: 367375.CrossRefGoogle ScholarPubMed
67.Fehm-Wolfsdorf, G, Born, J. Behavioral effects of neurohypophyseal peptides in healthy volunteers: 10 years of research. Peptides. 1991; 12: 13991406.CrossRefGoogle ScholarPubMed
68.Carter, CS, DeVries, AC, Getz, LL. Physiological substrates of mammalian monogamy: the prairie vole model. Neurosci Biobehav Rev. 1995; 19(2): 303314.CrossRefGoogle ScholarPubMed
69.Petersson, M. Cardiovascular effects of oxytocin. Prog Brain Res. 2002; 139: 281288.CrossRefGoogle ScholarPubMed
70.Young, LJ, Wang, Z. The neurobiology of pair bonding. Nat Neurosci. 2004; 7(10): 10481054.CrossRefGoogle ScholarPubMed
71.Taylor, SE, Gonzaga, GC, Klein, LC, Hu, P, Greendale, GA, Seeman, TE. Relation of oxytocin to psychological stress responses and hypothalamic-pituitary-adrenocortical axis activity in older women. Psychosom Med. 2006; 68(2): 238245.CrossRefGoogle ScholarPubMed
72.Heinrichs, M, Baumgartner, T, Kirschbaum, C, Ehlert, U. Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry. 2003; 54(12): 13891398.CrossRefGoogle ScholarPubMed
73.Turner, RA, Altemus, M, Enos, T, Cooper, B, McGuinness, T. Preliminary research on plasma oxytocin in normal cycling women: investigating emotion and interpersonal distress. Psychiatry. 1999; 62(2): 97113.CrossRefGoogle ScholarPubMed
74.Grewen, KM, Girdler, SS, Amico, J, Light, KC. Effects of partner support on resting oxytocin, cortisol, norepinephrine, and blood pressure before and after warm partner contact. Psychosom Med. 2005; 67(4): 531538.CrossRefGoogle ScholarPubMed
75.Light, KC, Grewen, KM, Amico, JA. More frequent partner hugs and higher oxytocin levels are linked to lower blood pressure and heart rate in premenopausal women. Biol Psychol. 2005; 69(1): 521.CrossRefGoogle ScholarPubMed
76.Neumann, ID, Torner, L, Wigger, A. Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience. 2000; 95(2): 567575.CrossRefGoogle ScholarPubMed
77.Windle, RJ, Kershaw, YM, Shanks, N, Wood, SA, Lightman, SL, Ingram, CD. Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. J Neurosci. 2004; 24(12): 29742982.CrossRefGoogle ScholarPubMed
78.Parker, KJ, Buckmaster, CL, Schatzberg, AF, Lyons, DM. Intranasal oxytocin administration attenuates the ACTH stress response in monkeys. Psychoneuroendocrinol. 2005; 30(9): 924929.CrossRefGoogle ScholarPubMed
79.Wise, RA, Bauco, P, Carlezon, WA Jr., Trojniar W. Self-stimulation and drug reward mechanisms. Ann N Y Acad Sci. 1992; 654: 192198.CrossRefGoogle ScholarPubMed
80.Di Chiara, G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res. 2002; 137(1–2): 75114.CrossRefGoogle ScholarPubMed
81.Drevets, WC, Ongur, D, Price, JL. Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders. Mol Psychiatry. 1998; 3(3): 220221.CrossRefGoogle ScholarPubMed
82.Rauch, SL, Shin, LM, Segal, E, et al. Selectively reduced regional cortical volumes in post-traumatic stress disorder. Neuroreport. 2003; 14(7): 913–16.Google ScholarPubMed
83.Sailer, U, Robinson, S, Fischmeister, FP et al. Altered reward processing in the nucleus accumbens and mesial prefrontal cortex of patients with posttraumatic stress disorder. Neuropsychologia. 2008; 46(11): 28362844.CrossRefGoogle ScholarPubMed
84.Puglisi-Allegra, S, Imperato, A, Angelucci, L, Cabib, S. Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Res. 1991; 554(1–2): 217222.CrossRefGoogle ScholarPubMed
85.Cabib, S, Puglisi-Allegra, S. Stress, depression and the mesolimbic dopamine system. Psychopharmacol (Berl). 1996; 128(4): 331342.CrossRefGoogle ScholarPubMed
86.Jacobsen, LK, Southwick, SM, Kosten, TR. Substance use disorders in patients with posttraumatic stress disorder: a review of the literature. Am J Psychiatry. 2001; 158(8): 11841190.CrossRefGoogle ScholarPubMed
87.Elman, I, Ariely, D, Mazar, N et al. Probing reward function in post-traumatic stress disorder with beautiful facial images. Psychiatry Res. 2005; 135(3): 179183.CrossRefGoogle ScholarPubMed
88.Elman, I, Lowen, S, Frederick, BB, Chi, W, Becerra, L, Pitman, RK. Functional neuroimaging of reward circuitry responsivity to monetary gains and losses in posttraumatic stress disorder. Biol Psychiatry. 2009; 66: 10831090.CrossRefGoogle ScholarPubMed
89.Hopper, JW, Pitman, RK, Su, Z et al. Probing reward function in posttraumatic stress disorder: expectancy and satisfaction with monetary gains and losses. J Psychiatr Res. 2008; 42(10): 802807.CrossRefGoogle ScholarPubMed
90.Stein, DJ. Oxytocin and vasopressin: social neuropeptides. CNS Spectr. 2009; 14(11): 602606.CrossRefGoogle ScholarPubMed
91.Taylor, SE, Klein, LC, Lewis, BP, Gruenewald, TL, Gurung, RA, Updegraff, JA. Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychol Rev. 2000; 107(3): 411429.CrossRefGoogle Scholar
92.Neumann, ID. Involvement of the brain oxytocin system in stress coping: interactions with the hypothalamo-pituitary-adrenal axis. Prog Brain Res. 2002; 139: 147162.CrossRefGoogle ScholarPubMed
93.Brewin, CR, Andrews, B, Valentine, JD. Meta-analysis of risk factors for posttraumatic stress disorder in trauma-exposed adults. J Consult Clin Psychol. 2000; 68(5): 748766.CrossRefGoogle ScholarPubMed
94.Ozer, EJ, Best, SR, Lipsey, TL, Weiss, DS. Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis. Psychol Bull. 2003; 129(1): 5273.CrossRefGoogle ScholarPubMed
95.Ditzen, B, Schaer, M, Gabriel, B, Bodenmann, G, Ehlert, U, Heinrichs, M. Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biol Psychiatry. 2009; 65(9): 728731.CrossRefGoogle ScholarPubMed
96.Gouin, JP, Carter, CS, Pournajafi-Nazarloo, H, et al. Marital behavior, oxytocin, vasopressin, and wound healing. Psychoneuroendocrinol. 2010. In press.Google Scholar
97.Kosfeld, M, Heinrichs, M, Zak, PJ, Fischbacher, U, Fehr, E. Oxytocin increases trust in humans. Nature. 2005; 435 (7042): 673676.CrossRefGoogle ScholarPubMed
98.Horvath, AO, Symonds, BD. Relation between working alliance and outcome in psychotherapy: A meta-analysis. J Counseling Psychol. 1991; 38(2): 139149.CrossRefGoogle Scholar
99.Martin, DJ, Garske, JP, Davis, MK. Relation of the therapeutic alliance with outcome and August 2010529 other variables: a meta-analytic review. J Consult Clin Psychol. 2000; 68(3): 438450.CrossRefGoogle Scholar
100.Cloitre, M, Koenen, KC, Cohen, LR, Han, H. Skills training in affective and interpersonal regulation followed by exposure: a phase-based treatment for PTSD related to child-hood abuse. J Consult Clin Psychol. 2002; 70(5): 10671074.CrossRefGoogle Scholar
101.Cloitre, M, Stovall-McClough, KC, Miranda, R, Chemtob, CM. Therapeutic alliance, negative mood regulation, and treatment outcome in child abuse-related posttraumatic stress disorder. J Consult Clin Psychol. 2004; 72(3): 411416.CrossRefGoogle ScholarPubMed
102.Charuvastra, A, Cloitre, M. Social bonds and posttraumatic stress disorder. Annu Rev Psychol. 2008; 59: 301328.CrossRefGoogle ScholarPubMed
103.Morris, JB, Beck, AT. The efficacy of antidepressant drugs. A review of research (1958-1972). Arch Gen Psychiatry. 1974; 30(5): 667674.CrossRefGoogle ScholarPubMed
104.Krupnick, JL, Sotsky, SM, Simmens, S et al. The role of the therapeutic alliance in psychotherapy and pharmacotherapy outcome: Findings in the National Institute of Mental Health Treatment of Depression Collaborative Research Program. J Consult Clin Psychol. 1996; 64(3): 532539.CrossRefGoogle ScholarPubMed
105.Insel, TR, Fernald, RD. How the brain processes social information: searching for the social brain. Annu Rev Neurosci. 2004; 27: 697722.CrossRefGoogle ScholarPubMed
106.Zak, PJ, Kurzban, R, Matzner, WT. Oxytocin is associated with human trustworthiness. Horm Behav. 2005; 48: 522527.CrossRefGoogle ScholarPubMed
107.Buchheim, A, Heinrichs, M, George, C et al. Oxytocin enhances the experience of attachment security. Psychoneuroendocrinol. 2009; 34(9): 14171422.CrossRefGoogle ScholarPubMed
108.Heinrichs, M, Domes, G. Neuropeptides and social behaviour: effects of oxytocin and vasopressin in humans. Prog Brain Res. 2008; 170: 337350.CrossRefGoogle ScholarPubMed
109.Mallinckrodt, B. Clients' representations of childhood emotional bonds with parents, social support, and formation of the working alliance. J Counseling Psychol. 1991; 38(4): 401409.CrossRefGoogle Scholar
110.Horvath, AO, Greenberg, LS. The Working Alliance: Theory, Research and Practice. New York, NY: Wiley; 1994.Google Scholar
111.Tops, M, van Peer, JM, Korf, J, Wijers, AA, Tucker, DM. Anxiety, cortisol, and attachment predict plasma oxytocin. Psychophysiol. 2007; 44(3): 444449.CrossRefGoogle ScholarPubMed
112.Fries, AB, Ziegler, TE, Kurian, JR, Jacoris, S, Pollak, SD. Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proc Natl Acad Sci U S A. 2005; 102(47): 1723717240.CrossRefGoogle Scholar
113.Heim, C, Young, DJ, Newport, DJ, Mletzko, T, Miller, AH, Nemeroff, CB. Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol Psychiatry. 2009; 14: 954958.CrossRefGoogle ScholarPubMed
114.Meinlschmidt, G, Heim, C. Sensitivity to intranasal oxytocin in adult men with early parental separation. Biol Psychiatry. 2007; 61: 11091111.CrossRefGoogle ScholarPubMed
115.Benoit, M, Bouthillier, D, Moss, E, Rousseau, C, Brunet, A. Emotion regulation strategies as mediators of the association between level of attachment security and PTSD symptoms following trauma in adulthood. Anxiety Stress Coping. 2009; 26: 118.Google Scholar
116.Carter, S. The chemistry of child neglect: Do oxytocin and vasopressin mediate the effects of early experience? PNAS. 2005; 102(51): 1824718248.CrossRefGoogle ScholarPubMed
117.Kramer, KM, Cushing, BS, Carter, CS, Wu, J, Ottinger, MA. Sex and species differences in plasma oxytocin using an enzymeimmunoassay. Can J Zool. 2004; 82: 11941200.CrossRefGoogle Scholar
118.Zingg, HH. Oxytocin (p. 779802). In: Pfaff, D et al. , eds. Hormones, Brain and Behavior. Vol. III. San Diego, CA: Academic Press; 2002.CrossRefGoogle Scholar
119.Zingg, HH, Laporte, SA. The oxytocin receptor. Trends Endocrinol Metab. 2003; 14: 222227.CrossRefGoogle ScholarPubMed
120.Carter, CS. Sex differences in oxytocin and vasopressin: Implications for autism spectrum disorders? Behavioural Brain Res. 2007; 176: 170186.CrossRefGoogle ScholarPubMed
121.Yamamoto, Y, Cushing, BS, Kramer, KM, Epperson, PD, Hoffman, GE, Carter, CS. Neonatal manipulations of oxytocin alter expression of oxytocin and vasopressin immunoreactive cells in the paraventricular nucleus of the hypothalamus in a gender-specific manner. Neurosci. 2004; 125(4): 947955.CrossRefGoogle Scholar
122.Bales, KL, Plotsky, PM, Young, LJ, et al. Neonatal oxytocin manipulations have long-lasting, sexually dimorphic effects on vasopressin receptors. Neurosci. 2007; 144: 3845.CrossRefGoogle ScholarPubMed
123.Carter, CS, Boone, EM, Pournajafi-Nazarloo, H, Bales, KL. The consequences of early experiences and exposure to oxytocin and vasopressin are sexually-dimorphic. Developmental Neurosci. 2009; 31: 332341.CrossRefGoogle ScholarPubMed
124.de Kloet, ER, Voorhuis, DA, Boschma, Y, Elands, J. Estradiol modulates density of putative ‘oxytocin receptors’ in discrete rat brain regions. Neuroendocrinol. 1986; 44(4): 415421.CrossRefGoogle ScholarPubMed
125.McCarthy, MM. Estrogen modulation of oxytocin and its relation to behavior. Adv Exp Med Biol. 1995; 395: 235245.Google ScholarPubMed
126.Bao, A-M, Hestiantoro, A, Van Someren, EJW, Swaab, DF, Zhou, J-N. Colocalization of corticotropin-releasing hormone and oestrogen receptor in the paraventricular nucleus of the hypothalamus in mood disorders. Brain. 2005; 128: 13011313.CrossRefGoogle ScholarPubMed
127.Bao, A-M, Fischer, DF, Wu, Y-H et al. A direct androgenic involvement in the expression of human corticotropin-releasing hormone. Mol Psychiatry. 2006; 11: 567576.CrossRefGoogle ScholarPubMed
128.Luckow, A, Reifman, A, McIntosh, DN. Gender differences in coping: A meta-analysis. Poster presented at: the 106th Annual Convention of the American Psychological Association; San Francisco, CA; 1988.Google Scholar
129.Craske, MG. The Origins of Phobias and Anxiety Disorders: Why More Women than Men. Oxford, England: Elsevier Science; 2003.Google Scholar
130.Andrews, B, Brewin, CR, Rose, S. Gender, social support, and PTSD in victims of violent crime. J Trauma Stress. 2003; 16(4): 421427.CrossRefGoogle ScholarPubMed
131.Ahern, J, Galea, S, Fernandez, WG, Koci, B, Waldman, R, Vlahov, D. Gender, social support, and posttraumatic stress in postwar Kosovo. J Nerv Ment Dis. 2004; 192(11): 762770.CrossRefGoogle ScholarPubMed
132.Weismann, MM, Nerai, Y, Das, A, et al. Gender differences in posttraumatic stress disorder among primary care patients after the World Trade Center attack of September 11, 2001. Gender Med. 2005; 2: 7687.CrossRefGoogle Scholar
133.Spreckelmeyer, KN, Krach, S, Kohls, G, et al. Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women. Soc Cogn Affect Neurosci. 2009; 4(2): 158165.CrossRefGoogle ScholarPubMed
134.Pitman, RK, Orr, SP, Lasko, NB. Effects of intranasal vasopressin and oxytocin on physiologic responding during personal combat imagery in Vietnam veterans with posttraumatic stress disorder. Psychiatry Res. 1993; 48(2): 107117.CrossRefGoogle ScholarPubMed
135.Born, J, Lange, T, Kern, W, McGregor, GP, Bickel, U, Fehm, HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002; 5: 514516.CrossRefGoogle ScholarPubMed
136.Heresco-Levy, U, Kremer, I, Javit, DC, et al. Pilot-controlled trial of D-cycloserine for the treatment of post-traumatic stress disorder. Int J Neurospychopharmacol. 2002; 5: 301307.CrossRefGoogle ScholarPubMed