Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T01:17:15.089Z Has data issue: false hasContentIssue false

Opioids: From Physical Pain to the Pain of Social Isolation

Published online by Cambridge University Press:  07 November 2014

Abstract

The opioid systems play an important role in mediating both physical pain and negative affects (eg, the pain of social isolation). From an evolutionary perspective, it is not surprising that the neurocircuitry and neurochemistry of physical pain would overlap with that involved in complex social emotions. Exposure to trauma as well as a range of gene variants in the opioid system may be associated with alterations in opioid systems function, with changes in reward processing, and with vulnerability to substance abuse. A role for interventions with opioid agents in depression and anxiety disorders has been suggested.

Type
Pearls in Clinical Neuroscience
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bodnar, RJ, Hadjimarkou, MM. Endogenous opiates and behavior: 2001. Peptides. 2002;23:23072365.CrossRefGoogle ScholarPubMed
2.Ribeiro, SC, Kennedy, SE, Smith, YR, Stohler, CS, Zubieta, JK. Interface of physical and emotional stress regulation through the endogenous opioid system and [mu]-opioid receptors. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:12641280.CrossRefGoogle ScholarPubMed
3.Cross, AJ, Hille, C, Slater, P. Subtraction autoradiography of opiate receptor subtypes in human brain. Brain Res. 1987;418:343348.CrossRefGoogle ScholarPubMed
4.Frost, JJ, Wagner, HN, Dannals, RF, et al.Imaging opiate receptors in the human brain by positron tomography. J Comput Assist Tomog. 1985;9:231236.CrossRefGoogle ScholarPubMed
5.Lever, JR. PET and SPECT imaging of the opioid system: receptors, radioligands and avenues for drug discovery and development. Curr Pharm Des. 2007;13:3349.CrossRefGoogle ScholarPubMed
6.Sugita, S, North, RA. Opioid actions on neurons of rat lateral amygdala in vitro. Brain Res. 1993;612:151155.CrossRefGoogle ScholarPubMed
7.Wiedenmayer, CP, Barr, GA. Mu opioid receptors in the ventrolateral periaqueductal gray medíate stress-induced analgesia but not immobility in rat pups. Behav Neurosci. 2000;114:125136.CrossRefGoogle Scholar
8.Liberzon, I, Zubieta, JK, Fig, LM, et al.mu-Opioid receptors and limbic responses to aversive emotional stimuli. Proc Natl Acad Sci U S A. 2002;99:70847089.CrossRefGoogle ScholarPubMed
9.Zubieta, JK, Dannals, RF, Frost, JJ. Gender and age influences on human brain mu-opioid receptor binding measured by PET. Am J Psychiatry. 1999;156:842848.CrossRefGoogle ScholarPubMed
10.Apkarian, AV, Bushnell, MC, Treede, RD, Zubieta, JK. Human brain mechanisms of pain perception and regulation in health and disease. Euro J Pain. 2005;9:463484.CrossRefGoogle ScholarPubMed
11.Nelson, EE, Panksepp, J. Brain substrates of infant-mother attachment: contributions of opioids, oxytocin, and norepinephrine. Neurosci Biobehav Rev. 1998;22:437452.CrossRefGoogle ScholarPubMed
12.MacDonald, AW, Cohen, JD, Stenger, VA, Carter, CS. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science. 2000;288:18351838.CrossRefGoogle ScholarPubMed
13.Sawamoto, N, Honda, M, Okada, T, et al.Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. J Neurosci. 2000;20:74387445.CrossRefGoogle ScholarPubMed
14.Rainville, P, Duncan, GH, Price, DD, Carrier, B, Bushnell, MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277:968971.CrossRefGoogle Scholar
15.Eisenberger, NI, Lieberman, MD, Williams, KD. Does rejection hurt? An FMRI study of social exclusion. Science. 2003;302:290292.CrossRefGoogle ScholarPubMed
16.Panksepp, J. Feeling the pain of social loss. Science. 2003;302:237239.CrossRefGoogle ScholarPubMed
17.Schlaepfer, TE, Strain, EC, Greenberg, BD, et al.Site of opioid action in the human brain: mu and kappa agonists' subjective and cerebral blood flow effects. Am J Psychiatry. 1998;155:470473.CrossRefGoogle ScholarPubMed
18.Leppa, M, Korvenoja, A, Carlson, S, et al.Acute opioid effects on human brain as revealed by functional magnetic resonance imaging. Neuroimage. 2006;31:661669.CrossRefGoogle ScholarPubMed
19.Becerra, L, Harter, K, Gonzalez, RG, Borsook, D. Functional magnetic resonance imaging measures of the effects of morphine on central nervous system circuitry in opioidnaive healthy volunteers. Anesth Analg. 2006;103:208216.CrossRefGoogle ScholarPubMed
20.Petrovic, P, Kalso, E, Petersson, KM, Ingvar, M. Placebo and opioid analgesia–imaging a shared neuronal network. Science. 2002;295:17371740.CrossRefGoogle ScholarPubMed
21.Shah, YB, Haynes, L, Prior, MJ, Marsden, CA, Morris, PG, Chapman, V. Functional magnetic resonance imaging studies of opioid receptor-mediated modulation of noxiousevoked BOLD contrast in rats. Psychopharmacology (Berl). 2005;180:761773.CrossRefGoogle ScholarPubMed
22.Wagner, KJ, Sprenger, T, Kochs, EF, Tölle, TR, Valet, M, Willoch, F. Imaging human cerebral pain modulation by dose-dependent opioid analgesia: a positron emission tomography activation study using remifentanil. Anesthesiology. 2007;106:548556.CrossRefGoogle ScholarPubMed
23.Zubieta, JK, Smith, YR, Bueller, JA, et al.Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science. 2001;293:311315.CrossRefGoogle ScholarPubMed
24.Kennedy, SE, Koeppe, RA, Young, EA, Zubieta, JK. Dysregulation of endogenous opioid emotion regulation circuitry in major depression in women. Arch Gen Psychiatry. 2006;63:11991208.CrossRefGoogle ScholarPubMed
25.Herman, BH. A possible role of proopiomelanocortin peptides in self-injurious behavior. Prog Neuropsychopharmacol Biol Psychiatry. 1990;14:S109S139.CrossRefGoogle ScholarPubMed
26.Liberzon, I, Taylor, SF, Phan, KL, et al.Altered central micro-opioid receptor binding after psychological trauma. Biol Psychiatry. 2007;61:10301038.CrossRefGoogle ScholarPubMed
27.Ikeda, K, Ide, S, Han, W, Hayashida, M, Uhl, GR, Sora, I. How individual sensitivity to opiates can be predicted by gene analyses. Trends Pharmacol Sci. 2005;26:311317.CrossRefGoogle ScholarPubMed
28.Somogyi, AA, Barratt, DT, Coller, JK. Pharmacogenetics of opioids. Clin Pharmacol Ther. 2007;81:429444.CrossRefGoogle ScholarPubMed
29.Mayer, P, Höllt, V. Pharmacogenetics of opioid receptors and addiction. Pharmacogenet Genomics. 2006;16:17.CrossRefGoogle ScholarPubMed
30.Arias, A, Feinn, R, Kranzler, HR, Association of an Asn40Asp (A118G) polymorphism in the mu-opioid receptor gene with substance dependence: a meta-analysis. Drug Alcohol Depend. 2006;83:262268.CrossRefGoogle ScholarPubMed
31.Max, MB, Wu, T, Atlas, SJ, Edwards, RR, Haythornthwaite, JA, Bollettino, AF. A clinical genetic method to identify mechanisms by which pain causes depression and anxiety. Mol Pain. 2006;2:14.CrossRefGoogle ScholarPubMed
32.Stein, DJ, Newman, TK, Savitz, J, Ramesar, R. Warriors vs worriers: the role of COMT gene variants. CNS Spectr. 2006;11:745748.CrossRefGoogle Scholar
33.Zubieta, JK, Heitzeg, MM, Smith, YR, et al.COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science. 2003;299:12401243.CrossRefGoogle ScholarPubMed
34.Panksepp, J. Why does separation distress hurt? Comment on MacDonald and Leary (2005). Psychol Bull. 2005;131:224230.CrossRefGoogle ScholarPubMed
35.Panksepp, J, Panksepp, JB. The seven sins of evolutionary psychology. Evolution and Cognition. 2000;6:108131.Google Scholar
36.Macdonald, G, Leary, MR. Why does social exclusion hurt? The relationship between social and physical pain. Psychol Bull. 2005;131:202223.CrossRefGoogle ScholarPubMed
37.Panksepp, J, Knutson, B, Burgdorf, J. The role of brain emotional systems in addictions: a neuro-evolutionary perspective and new ‘self-report’ animal model. Addiction. 2002;97:459469.CrossRefGoogle ScholarPubMed
38.Nesse, RM, Berridge, KC. Psychoactive drug use in evolutionary perspective. Science. 1997;278:6366.CrossRefGoogle ScholarPubMed
39.Gerald, MS, Higley, JD. Evolutionary underpinnings of excessive alcohol consumption. Addiction. 2002;97:415425.CrossRefGoogle ScholarPubMed
40.Kross, E, Egner, T, Ochsner, K, Hirsch, J, Downey, G. Neural dynamics of rejection sensitivity. J Cogn Neurosci. 2007;19:945956.CrossRefGoogle ScholarPubMed
41.Downey, G, Feldman, SI. Implications of rejection sensitivity for intimate relationships. J Pers Soc Psychol. 1996;70:13271343.CrossRefGoogle ScholarPubMed
42.Panksepp, J. Affective Neuroscience: The Foundations of Human and Animal Emotions. New York, NY: Oxford University Press; 1998.CrossRefGoogle Scholar
43.Schwartz, AC, Bradley, R, Penza, KM, et al.Pain medication use among patients with posttraumatic stress disorder. Psychosomatics. 2006;47:136142.CrossRefGoogle ScholarPubMed
44.Zacny, JRMorphine responses in humans: a retrospective analysis of sex differences. Drug Alcohol Depend. 2001;63:2328.CrossRefGoogle ScholarPubMed
45.Gowing, L, Ali, R, White, J. Buprenorphine for the management of opioid withdrawal. Cochrane Database Syst Rev. 2006;(2):CD002025.CrossRefGoogle Scholar
46.Amato, L, Davoli, M, A, Perucci C, Ferri, M, Faggiano, FP, Mattick, R. An overview of systematic reviews of the effectiveness of opiate maintenance therapies: available evidence to inform clinical practice and research. J Subst Abuse Treat. 2005;28:321329.CrossRefGoogle ScholarPubMed
47.Boothby, LA, Doering, PL. Buprenorphine for the treatment of opioid dependence. Am J Health Syst Pharm. 2007;64:266272.CrossRefGoogle ScholarPubMed
48.Amato, L, Minozzi, S, Davoli, M, Vecchi, S, Ferri, M, Mayet, S. Psychosocial and pharmacological treatments versus pharmacological treatments for opioid detoxification. Cochrane Database Syst Rev. 2004;(4):CD005031.Google Scholar
49.Amato, L, Minozzi, S, Davoli, M, Vecchi, S, Ferri, M, Mayet, S. Psychosocial combined with agonist maintenance treatments versus agonist maintenance treatments alone for treatment of opioid dependence. Cochrane Database Syst Rev. 2004;(4):CD004147.CrossRefGoogle Scholar
50.Grant, JE, Kim, SW. Medication management of pathological gambling. Minn Med. 2006;89:4448.Google ScholarPubMed
51.Srisurapanont, M, Jarusuraisin, N. Opioid antagonists for alcohol dependence. Cochrane Database Syst Rev. 2005;(1):CD001867.Google Scholar
52.Elchaar, GM, Maisch, NM, Augusto, LM, Wehring, HJ. Efficacy and safety of naltrexone use in pediatric patients with autistic disorder. Ann Pharmacother. 2006;40:10861095.CrossRefGoogle ScholarPubMed
53.Symons, FJ, Thompson, A, Rodriquez, MC. Self-injurious behavior and the efficacy of naltrexone treatment: a quantitative synthesis. Ment Retard Dev Disabil Res Rev. 2004;10:193200.CrossRefGoogle ScholarPubMed
54.Kosten, TR, Morgan, C, Kosten, TA. Depressive symptoms during buprenorphine treatment of opioid abusers. J Subst Abuse Treat. 1990;7:5154.CrossRefGoogle ScholarPubMed
55.Gerra, G, Leonardi, C, D'Amore, A, et al.Buprenorphine treatment outcome in dually diagnosed heroin dependent patients: a retrospective study. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:265272.CrossRefGoogle ScholarPubMed
56.Emrich, HM, Vogt, P, Herz, A. Possible antidepressive effects of opioids: action of buprenorphine. Ann N Y Acad Sci. 1982;398:108112.CrossRefGoogle ScholarPubMed
57.Bodkin, JA, Zornberg, GL, Lukas, SE, Cole, JO. Buprenorphine treatment of refractory depression. J Clin Psychopharmacol. 1995;15:4957.CrossRefGoogle ScholarPubMed
58.Saxe, G, Geary, M, Bedard, K, et al.Separation anxiety as a mediator between acute morphine administration and PTSD symptoms in injured children. Ann N Y Acad Sci. 2006;1071:4145.CrossRefGoogle ScholarPubMed
59.Bohus, MJ, Landwehrmeyer, GB, Stiglmayr, CE, Limberger, MF, Böhme, R, Schmahl, CG. Naltrexone in the treatment of dissociative symptoms in patients with borderline personality disorder: an open-label trial. J Clin Psychiatry. 1999;60:598603.CrossRefGoogle ScholarPubMed
60.Glover, H. A preliminary trial of nalmefene for the treatment of emotional numbing in combat veterans with post-traumatic stress disorder. Isr J Psychiatry Relat Sci. 1993;30:255263.Google ScholarPubMed
61.Lubin, G, Weizman, A, Shmushkevitz, M, Valevski, A. Short-term treatment of posttraumatic stress disorder with naltrexone: an open-label preliminary study. Hum Psychopharmacol. 2002;17:181185.CrossRefGoogle ScholarPubMed
62.Koran, LM, Aboujaoude, E, Bullock, KD, Franz, B, Gamel, N, Elliott, M. Double-blind treatment with oral morphine in treatment-resistant obsessive-compulsive disorder. J Clin Psychiatry. 2005;66:353359.CrossRefGoogle ScholarPubMed
63.Panksepp, J. Brain opioids: a neurochemical substrate for narcotic and social dependence. In: Cooper, SJ, ed. Progress in Theory in Psychopharmacology. London, England: Academic Press; 1981:149175.Google Scholar
64.Panksepp, J, Herman, BH, Vilberg, T, Bishop, P, DeEskinazi, FG. Endogenous opioids and social behavior. Neurosci Biobehav Revs. 1980;4:473487.CrossRefGoogle ScholarPubMed