Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T13:31:42.812Z Has data issue: false hasContentIssue false

Neuropsychiatric Morbidity in Adolescent and Adult Succinic Semialdehyde Dehydrogenase Deficiency Patients

Published online by Cambridge University Press:  07 November 2014

Abstract

Introduction:

Succinic semialdehyde dehydrogenase (SSADH) deficiency (γ-hydroxybutyric aciduria) is a rare neurometabolic disorder of γ-aminobutyric acid degradation. While neurological manifestations, such as developmental delay, are typical during infancy, limited data are available on adolescent and adult symptomatology.

Methods:

We overview the phenotype of 33 adolescents and adults (10.1–39.5 years of age, mean: 17.1 years, 48% females) with SSADH deficiency. For this purpose, we applied a database with systematic questionnaire-based follow-up data.

Results:

Sixty-six percent of patients (n=21) presented by 6 months of age, 14% from 6–12 months of age, 5% from 1–2 years of age, and 14% from 2–4 years of age, mean age at first symptoms was 11±12 months. However, mean age at diagnosis was 6.6±6.4 years of age. Presenting symptoms encompassed motor delay, hypotonia, speech delay, autistic features, seizures, and ataxia. Eighty-two percent demonstrated behavioral problems, such as attention deficit, hyperactivity, anxiety, or aggression, and 33% had ≥3 behavior problems. Electroencephalograms showed background slowing or epileptiform discharges in 40% of patients. Treatment approaches are then summarized.

Conclusion:

The variable phenotype in SSADH deficiency suggests the likelihood that this disease may be under-diagnosed. Families of patients with SSADH deficiency should be counseled and supported regarding the anticipated persistence of various neuropsychiatric symptoms into adulthood.

Type
Original Research
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gibson, KM, Christensen, E, Jakobs, C, et al.The clinical phenotype of succinic semialdehyde dehydragenase deficiency (4-hydroxybutyric aciduria): case reports of 23 new patients. Pediatrics. 1997;99:567574.CrossRefGoogle Scholar
2.Gibson, KM, Gupta, M, Pearl, PL, et al.Significant behavioral disturbances in succinic semialdehyde dehydragenase (SSADH) deficiency (gamma-hydroxybutyric aciduria). Biol Psychiatry. 2003;54:763768.CrossRefGoogle Scholar
3.Pearl, PL, Gibson, KM. Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology. 2003;60:14131417.CrossRefGoogle ScholarPubMed
4.Pearl, PL, Gibson, KM. Clinical aspects of the disorders of GABA metabolism in children. Curr Opin Neurol. 2004;17:107113.CrossRefGoogle ScholarPubMed
5.Pearl, PL, Acosta, MT, Wallis, DD, Bottiglieri, T, Miotto, K, Jakobs, C. Dyskinetic features of succinate semialdehyde dehyrdrogenase deficiency, a GABA degradative defect. In: Fernandez-Alvarez, E, Arzimanoglu, A, Tolosa, E, eds. Paediatric Movement Disorders: Progress in Understanding. 1st ed. Surrey, United Kingdom: John Libbey Eurotext; 2005:203212.Google Scholar
6.Pearl, PL, Capp, PK, Novotny, EJ, Gibson, KM. Inherited disorders of neurotransmitters in children and adults. Clin Biochem. 2005;38:10511058.CrossRefGoogle ScholarPubMed
7.Philippe, A, Deron, J, Geneviève, D, et al.Neurodevelopmental pattern of succinic semialdehyde dehydrogenase deficiency (gamma-hydroxybutyric aciduria). Dev Med Child Neurol. 2004;46:564568.CrossRefGoogle ScholarPubMed
8.Gibson, KM, Schor, DS, Gupta, M, et al.Focal neurometabolic alterations in mice deficient for succinate semialdehyde dehydrogenase. J Neurochem. 2002;81:7179.CrossRefGoogle ScholarPubMed
9.Gupta, M, Hogema, BM, Grompe, M, et al.Murine succinate semialdehyde dehydrogenase deficiency. Ann Neurol. 2003;54(suppl 6):S81S90.CrossRefGoogle ScholarPubMed
10.Gupta, M, Polinsky, M, Senephansiri, H, et al.Seizure evolution and amino acid imbalances in murine succinate semialdehyde dehydrogenase (SSADH) deficiency. Neurobiol Dis. 2004;16:556562.CrossRefGoogle ScholarPubMed
11.Gibson, KM, Jakobs, C, Pearl, PL, Snead, OC. Murine succinate semialdehyde dehydrogenase (SSADH) deficiency, a heritable disorder of GABA metabolism with epileptic phenotype. IUBMB Life. 2005;57:639644.CrossRefGoogle ScholarPubMed
12.Gibson, KM, Gupta, M, Senephansiri, H, et al.Oxidant stress and neurodegeneration in murine succinic semialdehyde dehydrogenase (SSADH) deficiency. In: Hoffmann, GF, ed. Diseases of Neurotransmission: From Bench to Bed. 1st ed. Heilbronn, Germany: SPS Publication; 2006:199212.Google Scholar
13.Chowdhury, GM, Gupta, M, Gibson, KM, Patel, AB, Behar, KL. Altered cerebral glucose and acetate metabolism in succinic semialdehyde dehydrogenase-deficient mice: evidence for glial dysfunction and reduced glutamate/glutamine cycling. J Neurochem. 2007;103:20772091.CrossRefGoogle ScholarPubMed
14.Gibson, KM, Aramaki, S, Sweetman, L, et al.Stable isotope dilution analysis of 4-hydroxybutyric acid: an accurate method for quantification in physiological fluids and the prenatal diagnosis of 4-hydroxybutyric aciduria. Biomed Environ Mass Spectrom. 1990;19:8993.CrossRefGoogle Scholar
15.Wolf, NI, Haas, D, Hoffmann, GF, et al.Sedation with 4-hydroxybutyric acid: a potential pitfall in the diagnosis of SSADH deficiency. J Inherit Metab Dis. 2004;27:291293.CrossRefGoogle ScholarPubMed
16.Gibson, KM, Sweetman, L, Jansen, I, et al.Properties of succinic semialdehyde dehydrogenase in cultured human lymphoblasts. J Neurogenet. 1985;2:111122.CrossRefGoogle ScholarPubMed
17.Gibson, KM, Lee, CF, Chambliss, KL, et al.4-Hydroxybutyric aciduria: application of a fluorometric assay to the determination of succinic semialdehyde dehydrogenase activity in extracts of cultured human lymphoblasts. Clin Chim Acta. 1991;196:219221.CrossRefGoogle Scholar
18.Akaboshi, S, Hogema, BM, Novelletto, A, et al.Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum Mutat. 2003;22:442450.CrossRefGoogle ScholarPubMed
19.Chambliss, KL, Hinson, DD, Trettel, F, et al.Two exon-skipping mutations as the molecular basis of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria). Am J Hum Genet. 1998;63:399408.CrossRefGoogle ScholarPubMed
20.Jakobs, C, Bojasch, M, Mönch, E, Rating, D, Siemes, H, Hanefeld, F. Urinary excretion of gamma-hydroxybutyric acid in a patient with neurological abnormalities. The probability of a new inborn error of metabolism. Clin Chim Acta. 1981;111:169178.CrossRefGoogle Scholar
21.Jakobs, C, Smit, LM, Kneer, J, Michael, T, Gibson, KM. The first adult case with 4-hydroxybutyric aciduria. J Inherit Metab Dis. 1990;13:341344.CrossRefGoogle ScholarPubMed
22.Arnulf, I, Konofal, E, Gibson, KM, et al.Effect of genetically caused excess of brain gamma-hydroxybutyric acid and GABA on sleep. Sleep. 2005;28:418424.CrossRefGoogle ScholarPubMed
23.Pearl, PL, Acosta, MT, Theodore, WH, et al.Human SSADH deficiency-phenotype and treatment strategies. In: Hoffmann, GF, ed. Diseases of Neurotransmission: From Bench to Bed. 1st ed. Heilbronn, Germany: SPS Publication; 2006:187198.Google Scholar
24.Chan, KF, Burnham, WM, Jia, Z, Cortez, MA, Snead, OC 3rd. GABAB receptor antagonism abolishes the learning impairments in rats with chronic atypical absence seizures. Eur J Pharmacol. 2006;541:6472.CrossRefGoogle ScholarPubMed
25.Hogema, BM, Gupta, M, Senephansiri, H, et al.Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase. Nat Genet. 2001;29:212216.CrossRefGoogle ScholarPubMed
26.Wu, Y, Ali, S, Ahmadian, G, et al.Gamma-hydroxybutyric acid (GHB) and gamma-aminobutyric acidB receptor (GABABR) binding sites are distinctive from one another: molecular evidence. Neuropharmacology. 2004;47:11461156.CrossRefGoogle ScholarPubMed
27.Wu, Y, Buzzi, A, Frantseva, M, et al.Status epilepticus in mice deficient for succinate semialdehyde dehydrogenase: GABAA receptor-mediated mechanisms. Ann Neurol. 2006;59:4252.CrossRefGoogle ScholarPubMed
28.Wu, Y, Buzzi, A, Shen, L, et al.Differential expression of ampa-type glutamate receptors in the brain of mice deficient for succinate semialdehyde dehydrogenase. In: 2004 Abstract Viewer/Itinerary Planner. Program No. 952. 10. Washington, DC: Society for Neuroscience; 2004. Available at: http://sfn.scholarone.com. Accessed January 2, 2008.Google Scholar
29.Buzzi, A, Wu, Y, Frantseva, MV, et al.Succinic semialdehyde dehydrogenase deficiency: GABAB receptor-mediated function. Brain Res. 2006;1090:1522.CrossRefGoogle ScholarPubMed
30.Pearl, PL, Taylor, JL, Trzcinski, S, et al.11C-Flumazenil PET imaging in patients with SSADH deficiency. J Inherit Metab Dis. 2007;30(suppl 1):43.Google Scholar
31.Reis, J, Cohen, LG, Pearl, PL, Gibson, KM, Dustin, I, Theodore, WH. Transcranial magnetic stimulation reveals altered cortical excitability in succinic semialdehyde dehydrogenase deficiency. In: Abstract Viewer. Program No. 3. 029. Philadelphia, Penn: American Epilepsy Society; 2007.Google Scholar
32.Mehta, AK, Gould, GG, Gupta, M, Carter, LP, Gibson, KM, Ticku, MK. Succinate semiaidehyde dehydrogenase deficiency does not down-regulate gamma-hydraxybutyric acid binding sites in the mouse brain. Mol Genet Metab. 2006;88:8689.CrossRefGoogle Scholar
33.Barcelo-Coblijn, G, Murphy, EJ, Mills, K, et al.Lipid abnormalities in succinate semiaidehyde dehydrogenase (Aldh5a1-/-) deficient mouse brain provide additional evidence for myelin alterations. Biochim Biophys Acta. 2007;1772:556562.CrossRefGoogle ScholarPubMed
34.Donarum, EA, Stephan, DA, Larkin, K, et al.Expression profiling reveals multiple myelin alterations in murine succinate semialdehyde dehydrogenase deficiency. J Inherit Metab Dis. 2006;29:143156.CrossRefGoogle ScholarPubMed
35.Knerr, I, Pearl, PL, Bottiglieri, T, Snead, OC, Jakobs, C, Gibson, KM. Therapeutic concepts in succinate semialdehyde dehydrogenase (SSADH: ALDH5a1) deficiency (gamma-hydroxybutyric aciduria). Hypotheses evolved from 25 years of patient evaluation, studies in Aldh5a1-/- mice and characterization of gamma-hydroxybutyric acid pharmacology. J Inherit Metab Dis. 2007;30:279294.CrossRefGoogle ScholarPubMed
36.Latini, A, Scussiato, K, Leipnitz, G, Gibson, KM, Wajner, M. Evidence for oxidative stress in tissues derived from succinate semialdehyde dehydrogenase-deficient mice. J Inherit Metab Dis. 2007;30:800810.CrossRefGoogle ScholarPubMed
37.Sauer, SW, Kölker, S, Hoffmann, GF, et al.Enzymatic and metabolic evidence for a region specific mitochondrial dysfunction in brains of murine succinic semialdehyde dehydrogenase deficiency (Aldh5a1-/- mice). Neurochem Int. 2007;50:653659.CrossRefGoogle ScholarPubMed
38.Gibson, KM, Hoffmann, GF, Hodson, AK, Bottiglieri, T, Jakobs, C. 4-Hydroxybutyric acid and the clinical phenotype of succinic semialdehyde dehydrogenase deficiency, an inborn error of GABA metabolism. Neuropediatrics. 1998;29:1422.CrossRefGoogle Scholar
39.Scharf, MB, Brown, D, Woods, M, Brown, L, Hirschowitz, J. The effects and effectiveness of gamma-hydroxybutyrate in patients with narcolepsy. J Clin Psychiatry. 1985;46:222225.Google ScholarPubMed
40.Shannon, M, Quang, LS. Gamma-hydroxybutyrate, gamma-butyrolactone, and 1,4-butanediol: a case report and review of the literature. Pediatr Emerg Care. 2000;16:435440.CrossRefGoogle ScholarPubMed
41.Drasbek, KR, Christensen, J, Jensen, K. Gamma-hydroxybutyrate—a drug of abuse. Acta Neurol Scand. 2006;114:145156.CrossRefGoogle ScholarPubMed
42.Goodwin, AK, Griffiths, RR, Brown, PR, et al.Chronic intragastric administration of gamma-butyrolactone produces physical dependence in baboons. Psychopharmacology (Berl). 2006;189:7182.CrossRefGoogle ScholarPubMed
43.Weerts, EM, Goodwin, AK, Griffiths, RR, et al.Spontaneous and precipitated withdrawal after chronic intragastric administration of gamma-hydroxybutyrate (GHB) in baboons. Psychopharmacology (Berl). 2005;179:678687.CrossRefGoogle ScholarPubMed
44.Gibson, KM, DeVivo, DC, Jakobs, C. Vigabatrin therapy in patient with succinic semiaidehyde dehydrogenase deficiency. Lancet. 1989;2:11051106.CrossRefGoogle ScholarPubMed
45.Gibson, KM, Jakobs, C, Ogier, H, et al.Vigabatrin therapy in six patients with succinic semialdehyde dehydrogenase deficiency. J Inherit Metab Dis. 1995;18:143146.CrossRefGoogle ScholarPubMed
46.Gropman, A. Vigabatrin and newer interventions in succinic semialdehyde dehydrogenase deficiency. Ann Neurol. 2003;54(suppl 6):S66S72.CrossRefGoogle ScholarPubMed
47.Ergezinger, K, Jeschke, R, Frauendienst-Egger, G, Korall, H, Gibson, KM, Schuster, VH. Monitoring of 4-hydroxybutyric acid levels in body fluids during vigabatrin treatment in succinic semialdehyde dehydrogenase deficiency. Ann Neurol. 2003;54:686689.CrossRefGoogle ScholarPubMed
48.Gordon, N. Succinic semialdehyde dehydrogenase deficiency (SSADH) (4-hydroxybutyric aciduria, gamma-hydroxybutyric aciduria). Eur J Paediatr Neurol. 2004;8:261265.CrossRefGoogle ScholarPubMed
49.Matern, D, Lehnert, W, Gibson, KM, Korinthenberg, R. Seizures in a boy with succinic semialdehyde dehydrogenase deficiency treated with vigabatrin (gamma-vinyl-GABA). J Inherit Metab Dis. 1996;19:313318.CrossRefGoogle Scholar
50.Gupta, M, Greven, R, Jansen, EE, et al.Therapeutic intervention in mice deficient for succinate semialdehyde dehydrogenase (gamma-hydroxybutyric aciduria). J Pharmacol Exp Ther. 2002;302:180187.CrossRefGoogle ScholarPubMed
51.Löscher, W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs. 2002;16:669694.CrossRefGoogle ScholarPubMed
52.Löscher, W. Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog Neurobiol. 1999;58:3159.CrossRefGoogle ScholarPubMed
53.Shinka, T, Ohfu, M, Hirose, S, Kuhara, T. Effect of valproic acid on the urinary metabolic profile of a patient with succinic semialdehyde dehydrogenase deficiency. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;792:99106.CrossRefGoogle ScholarPubMed
54.Pattarelli, PP, Nyhan, WL, Gibson, KM. Oxidation of [U-14C]succinic semialdehyde in cultured human lymphoblasts: measurement of residual succinic semialdehyde dehydrogenase activity in 11 patients with 4-hydroxybutyric aciduria. Pediatr Res. 1988;24:455460.CrossRefGoogle ScholarPubMed
55.Cortez, MA, Wu, Y, Gibson, KM, Snead, O 3rd. Absence seizures in succinic semialdehyde dehydrogenase deficient mice: a model of juvenile absence epilepsy. Pharmacol Biochem Behav. 2004;79:547553.CrossRefGoogle Scholar
56.Saransaari, P, Oja, SS. Taurine and neural cell damage. Amino Acids. 2000;19:509526.CrossRefGoogle ScholarPubMed
57.Freeman, J, Veggiotti, P, Lanzi, G, et al.The ketogenic diet: from molecular mechanisms to clinical effects. Epilepsy Res. 2006;68:145180.Google ScholarPubMed
58.Groesbeck, DK, Bluml, RM, Kossoff, EH. Long-term use of the ketogenic diet in the treatment of epilepsy. Dev Med Child Neurol. 2006;48:978981.Google ScholarPubMed
59.Henderson, CB, Filloux, FM, Alder, SC, Lyon, JL, Caplin, DA. Efficacy of the ketogenic diet as a treatment option for epilepsy: meta-analysis. J Child Neurol. 2006;21:193198.CrossRefGoogle ScholarPubMed
60.Nylen, K, Likhodii, S, Perez Velasquez, JL, Burnham, WM, Gibson, KM, Snead, O. The ketogenic diet rescues the lethal phenotype and restores synaptic activity in succinic semialdehyde dehydrogenase deficient mice. Clin Neurophysiol. 2007;118:e187.CrossRefGoogle Scholar